Globaler Markt für Graphdatenbanken – Branchentrends und Prognose bis 2030

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Jetzt kaufenJetzt kaufen Vor dem Kauf anfragen Vorher anfragen Kostenloser Beispielbericht Kostenloser Beispielbericht

Globaler Markt für Graphdatenbanken – Branchentrends und Prognose bis 2030

  • ICT
  • Upcoming Reports
  • Nov 2024
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60

Global Graph Database Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Diagramm Prognosezeitraum
2024 –2031
Diagramm Marktgröße (Basisjahr)
USD 2.29 Billion
Diagramm Marktgröße (Prognosejahr)
USD 8.72 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Globaler Markt für Graphdatenbanken, nach Typ (Resource Description Framework (RDF), Labeled Property Graph (LPG)), Anwendung (Betrugserkennung, -prävention, Empfehlungsmaschine), Datenbank (relational (SQL), nicht relational (NoSQL)), Bereitstellungsmodell (vor Ort und in der Cloud), Analysetyp (Pfadanalyse, Konnektivitätsanalyse, Community-Analyse und Zentralitätsanalyse), Größe (Großunternehmen, kleine und mittlere Unternehmen), Komponente (Software, Dienste), Endbenutzer (Bankwesen, Finanzdienstleistungen und Versicherungen, Telekommunikation und IT, Gesundheitswesen und Biowissenschaften, Transport und Logistik, Einzelhandel und E-Commerce, Energie und Versorgungsunternehmen, Regierung und Öffentlichkeit, Fertigung, andere) – Branchentrends und Prognose bis 2030.

Globaler Markt für Graphdatenbanken

Marktanalyse und -größe für Graphdatenbanken

Frühe Einführung von Graphdatenbank-Tools und wachsende Branchenallianzen mit vielen Technologieunternehmen zur Bereitstellung von Datenverarbeitungs- und schnellen Analyselösungen. Die frühen Phasen des technologischen Fortschritts, etablierte Fintech-Lösungen und Verbesserungen in der Informationstechnologie tragen alle stark zum Wachstum dieses Marktes bei. Darüber hinaus wird erwartet, dass das Marktwachstum durch die Einführung des Internets der Dinge (IoT) und künstlicher Intelligenz (KI) unterstützt wird. Infolgedessen wird erwartet, dass die Nachfrage nach Diagrammdatenbanklösungen aufgrund verstärkter Investitionen in Spitzentechnologien wie maschinelles Lernen (ML) in den kommenden Jahren erheblich steigen wird.

Data Bridge Market Research analysiert, dass der Markt für Graphdatenbanken bis 2030 voraussichtlich 7384,79 Millionen USD erreichen wird, was im Jahr 2022 1938,20 Millionen USD entspricht, was einer durchschnittlichen jährlichen Wachstumsrate von 18,20 % während des Prognosezeitraums entspricht. Neben Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

Marktumfang und -segmentierung für Graphdatenbanken

Berichtsmetrik

Details

Prognosezeitraum

2023 bis 2030

Basisjahr

2022

Historische Jahre

2021 (Anpassbar auf 2015 – 2020)

Quantitative Einheiten

Umsatz in Mio. USD, Mengen in Einheiten, Preise in USD

Abgedeckte Segmente

Nach Typ (Resource Description Framework (RDF), Labeled Property Graph (LPG)), Anwendung (Betrugserkennung, -prävention, Empfehlungsmaschine), Datenbank (relational (SQL), nicht relational (NoSQL)), Bereitstellungsmodell (vor Ort und in der Cloud), Analysetyp (Pfadanalyse, Konnektivitätsanalyse, Community-Analyse und Zentralitätsanalyse), Größe (Großunternehmen, kleine und mittlere Unternehmen), Komponente (Software, Dienste), Endbenutzer (Bankwesen, Finanzdienstleistungen und Versicherungen, Telekommunikation und IT, Gesundheitswesen und Biowissenschaften, Transport und Logistik, Einzelhandel und E-Commerce , Energie- und Versorgungsunternehmen, Regierung und Öffentlichkeit, Fertigung, Sonstige)

Abgedeckte Länder

USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Israel, Ägypten, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika

Abgedeckte Marktteilnehmer

Teradata (USA), Hewlett Packard Enterprise Development LP (USA), IBM Corporation (USA), Microsoft (USA), Siemens AG (Deutschland), ANSYS, Inc (USA), SAP SE (Deutschland), Oracle (USA), Robert Bosch GmbH (Deutschland), Swim.ai, Inc. (USA), Atos SE (Frankreich), ABB (Schweiz), KELLTON TECH (Indien), AVEVA Group plc (Großbritannien), DXC Technology Company (USA), Altair Engineering, Inc (USA), Hexaware Technologies Limited (Indien), Tata Consultancy Services Limited (Indien), Infosys Limited (Indien), NTT DATA, Inc. (Japan), TIBCO Software Inc. (USA), Redis Ltd (USA)

Marktchancen

  • Zunehmende Nutzung von Graphdatenbankdiensten und -tools auf Basis künstlicher Intelligenz (KI).
  • Steigende Nachfrage nach Abfrageverarbeitungslösungen mit geringer Latenz

Marktdefinition

Graphdatenbank bezeichnet einen Datenbanktyp, der Graphstrukturen für semantische Abfragen mit Knoten, Kanten und Eigenschaften verwendet, um die Daten zu speichern und darzustellen. Jede Kante stellt eine Verbindung oder Beziehung dar und jeder Knoten stellt eine Entität zwischen zwei Knoten dar. Graphdatenbanken sind jene Technologien, die die relationalen Online-Transaktionsverarbeitungsdatenbanken (OLTP) übersetzen.

Markt für Graphdatenbanken

Treiber

  • Steigende Nachfrage nach Lösungen mit der Fähigkeit, Abfragen mit geringer Latenz zu verarbeiten

Graphdatenbank-Tools und -Dienste werden weltweit in großem Umfang genutzt, und zwar in einem solchen Ausmaß, dass zahlreiche Anbieter von herkömmlichen Datenbanken versuchen, Graphdatenbankschemata in ihre wichtigsten relationalen Datenbankinfrastrukturen zu integrieren. Theoretisch mag diese Strategie zwar Geld sparen, tatsächlich kann sie jedoch die Leistung von Abfragen, die neben der Datenbank ausgeführt werden, beeinträchtigen und verlangsamen. Eine Graphdatenbank verwandelt traditionelle stationäre Geschäfte in digitale Geschäftskraftwerke im Hinblick auf digitale Geschäftsaktivitäten. Daher wird erwartet, dass die steigende Nachfrage nach Lösungen mit der Fähigkeit, Abfragen mit geringer Latenzzeit zu verarbeiten, die Wachstumsrate des Marktes vorantreiben wird.

  • Zunehmende Nutzung der Graphdatenbanktechnologie

Hersteller nutzen Graphdatenbanktechnologie in großem Umfang, insbesondere für das Geschäftsdatenmanagement, mit Anwendungen in zahlreichen Branchen und Sektoren. Die Graphdatenbanktechnologie bietet im Vergleich zu anderen Datenbanksystemen zahlreiche Vorteile bei der Lösung von Problemen, die bei der Auswertung komplizierter und großer Datenmengen auftreten. Diese Systeme sind in der Lage, große Datenmengen oder Informationssätze, die auf natürliche Weise entstehen, zu verwalten und zu skalieren.

Gelegenheiten

  • Steigende Nachfrage nach Abfrageverarbeitungslösungen mit geringer Latenz

Unternehmen stoßen auf Probleme, wenn sie große Mengen verbundener Daten in einer Datenbank speichern, die für keinen bestimmten Zweck geeignet ist. Jetzt setzen Unternehmen ein Echtzeit-Empfehlungssystem ein, das Abfragen mit geringer Latenz verarbeiten kann, anstatt umständliche Stapelverarbeitung auf einer gemeinsamen relationalen Datenbank durchzuführen. Es übertrifft herkömmliche relationale Datenbanken erheblich, indem es Benutzern ermöglicht, frühere Einkäufe von Kunden während eines Online-Besuchs gezielt abzufragen, um Sitzungs- und Verlaufsdaten abzugleichen. Durch die Verwendung einer Graphdatenbank gibt es weniger Latenz. Darüber hinaus können Millionen verbundener Datensätze mit einer zuverlässigen Antwortzeit durchsucht werden, unabhängig von der Datenbankgröße, während die Links und Knoten aufeinander „verweisen“. Um eine geringe Latenz zu erreichen, werden Abfragen in Unterabfragen unterteilt, die sofort ausgeführt werden. Daher wird die wachsende Nachfrage nach Abfrageverarbeitungslösungen mit geringer Latenz enorme Möglichkeiten für Marktwachstum schaffen.

Beschränkungen

  • Komplexe Programmierung und Standardisierung

Graphdatenbanken sind technisch gesehen NoSQL-Datenbanken, die in der Praxis auf einem einzigen Server ausgeführt werden müssen, da diese Datenbanken nicht in einem kostengünstigen Cluster verteilt werden können. Dies führt dazu, dass die Leistung eines Netzwerks schnell nachlässt. Ein weiterer großer Nachteil besteht darin, dass die Entwickler ihre Anfragen in Java schreiben müssen, da es kein SQL gibt, um Daten aus Graphdatenbanken zu speichern, was die Einstellung teurer Programmierer erforderlich macht. All dies sind einige der Hauptfaktoren, die das Wachstum des Marktes hemmen.

Dieser Marktbericht für Graphdatenbanken enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für Graphdatenbanken zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.

Covid-19-Auswirkungsanalyse auf den globalen Markt für Graphdatenbanken

Der Ausbruch der COVID-19-Pandemie hat die Dynamik der Geschäftstätigkeit weltweit verändert und hatte aufgrund der von den Regierungen verhängten Lockdowns zur Eindämmung der Ausbreitung des Coronavirus einen erheblich negativen Einfluss auf die Unternehmen. Der Ausbruch von COVID-19 bot Unternehmen jedoch zahlreiche Möglichkeiten, ihre Geschäftstätigkeit länderübergreifend auszuweiten und zu digitalisieren, da die Implementierung und Einführung von Technologien wie prädiktive Analysen, Internet der Dinge (IoT), Big Data, künstliche Intelligenz (KI) und Blockchain-Technologie während der ersten Lockdowns zunahm. Mit der Einführung von Impfungen wird jedoch erwartet, dass Unternehmen, die in diesen Branchen tätig sind, erhebliche Investitionen anziehen werden, da Graphdatenbanklösungen im Prognosezeitraum in zahlreichen Geschäftsbereichen an Popularität gewonnen haben.

Jüngste Entwicklung

  • Im Jahr 2021 brachte Neo4j seine neue Graphdatenbank, Version 4.3, mit inkrementellen Upgrades auf den Markt, die frühere Entdeckungen hervorheben. Dank verbesserter Indizes für Beziehungseigenschaften und intelligenter IO-Planung umfasst die neueste Version Beziehungskettensperren für schnelleres Schreiben von Graphdaten, Transaktionsgeschwindigkeit und parallelisierte Sicherung.
  • Im Jahr 2021 gab DataStax, Inc. die Übernahme von Kafkaesque Technologies Inc. bekannt, einem Cloud-Messaging-Dienst, der vollständig von Apache Pulsar gesteuert und verwaltet wird, um die Bereitstellung von Open-Source-, Cloud-nativem und Scale-Out-Streaming von Geschäftsereignissen für fortschrittliche Datenanwendungen zu beschleunigen. Diese Übernahme ermöglicht es Unternehmen, moderne Datenanwendungen mit unbegrenzter Skalierung, Cloud-Hosting und schneller Entwicklungsgeschwindigkeit bereitzustellen.

Globaler Marktumfang für Graphdatenbanken

Der Markt für Graphdatenbanken ist nach Typ, Anwendung, Datenbank, Bereitstellungsmodell, Analysetyp, Größe, Komponente und Endbenutzer segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.

Typ

  • Ressourcenbeschreibungsrahmen (RDF)
  • Beschrifteter Eigenschaftsgraph (LPG)

 Anwendung

  • Betrugserkennung
  • Verhütung
  • Empfehlungsmaschine
  • Datenbank (Relational (SQL)
  • Nicht-relational (NoSQL)

Bereitstellungsmodell

  • Vor Ort
  • Wolke

Analysetyp

  • Pfadanalyse
  • Konnektivitätsanalyse
  • Community-Analyse und Zentralitätsanalyse

Größe

  • Große Unternehmen
  • Kleine und mittlere Unternehmen

Komponente

  • Software
  • Dienstleistungen
  • Professionelle Dienstleistungen
  • Verwaltete Dienste

 Endbenutzer

  • Banken, Finanzdienstleistungen und Versicherungen
  • Telekommunikation und IT
  • Gesundheitswesen und Biowissenschaften
  • Transport und Logistik
  • Einzelhandel und E-Commerce
  • Energie und Versorgung
  • Regierung und Öffentlichkeit
  • Herstellung
  • Sonstiges

Regionale Analyse/Einblicke zum Graphdatenbankmarkt

Der Markt für Graphdatenbanken wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Typ, Anwendung, Datenbank, Bereitstellungsmodell, Analysetyp, Größe, Komponente und Endbenutzer wie oben angegeben bereitgestellt.

Die im Marktbericht für Graphdatenbanken abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Israel, Ägypten, Südafrika, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.

Nordamerika dominiert den Markt für Graphdatenbanken in Bezug auf Umsatz und Marktanteil aufgrund der Präsenz gut etablierter Fintech-Lösungen und des frühen Wachstums der Technologie. Darüber hinaus werden Fortschritte in der Informationstechnologie das Marktwachstum in dieser Region weiter ankurbeln. 

Der asiatisch-pazifische Raum wird im Prognosezeitraum 2023–2030 voraussichtlich weiterhin die höchste durchschnittliche jährliche Wachstumsrate aufweisen, da die Möglichkeiten für kleinere Anbieter von Graphdatenbanken, Graphdatenbanklösungen für viele Sektoren auf den Markt zu bringen, in dieser Region erheblich zugenommen haben.

Der Länderabschnitt des Berichts enthält auch individuelle marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die die aktuellen und zukünftigen Trends des Marktes beeinflussen. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.   

Wettbewerbsumfeld und Analyse der Marktanteile von Graphdatenbanken

Die Wettbewerbslandschaft des Graphdatenbankmarkts liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Graphdatenbankmarkt.

Einige der wichtigsten Akteure auf dem Markt für Graphdatenbanken sind:

  • Teradata (USA)
  • Hewlett Packard Enterprise Development LP (USA)
  • IBM Corporation (USA)
  • Microsoft (US)
  • Siemens AG (Deutschland)
  • ANSYS, Inc (USA)
  • SAP SE (Deutschland)
  • Oracle (USA)
  • Robert Bosch GmbH (Deutschland)
  • Swim.ai, Inc. (USA)
  • Atos SE (Frankreich)
  • ABB (Schweiz)
  • KELLTON TECH (Indien)
  • AVEVA Group plc (Großbritannien)
  • DXC Technology Company (USA)
  • Altair Engineering, Inc (USA)
  • Hexaware Technologies Limited (Indien)
  • Tata Consultancy Services Limited (Indien)
  • Infosys Limited (Indien)
  • NTT DATA, Inc. (Japan)
  • TIBCO Software Inc. (USA)


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

The Growing usage of graph database technology and Increasing demand for solutions with the capability to process low-latency queries are the growth drivers of the Graph Database Market.
The type, application, database, deployment model, analysis type, size, component and end user are the factors on which the Graph Database Market research is based.
The major companies in the Graph Database Market are Teradata (U.S.), Hewlett Packard Enterprise Development LP (U.S.), IBM Corporation (U.S.), Microsoft (U.S.), Siemens AG (Germany), ANSYS, Inc (U.S.), SAP SE (Germany), Oracle (U.S.), Robert Bosch GmbH (Germany), Swim.ai, Inc. (U.S.)., Atos S.E. (France), ABB (Switzerland), KELLTON TECH (India), AVEVA Group plc (U.K.), DXC Technology Company (U.S.), Altair Engineering, Inc (U.S.), Hexaware Technologies Limited (India), Tata Consultancy Services Limited (India), Infosys Limited (India), NTT DATA, Inc. (Japan), TIBCO Software Inc. (U.S.), Redis Ltd (U.S.).