Globaler Markt für Big Data-Analysen im Agrarbereich, nach Typ (Erfassung von Daten, Speicherung von Daten, Weitergabe von Daten, Analyse von Daten und andere), Anwendung (Pflanzenproduktion, landwirtschaftliche Geräte, Wetter und Chemikalien), Endbenutzer (Landwirte, Landwirtschaftsaufsichtsbehörden, Wettervorhersage, Agrochemie- und Landwirtschaftsgeräteindustrie) – Branchentrends und Prognose bis 2030.
Big Data Analytics in der Landwirtschaft – Marktanalyse und -größe
Big Data Analytics in der Landwirtschaft bezieht sich auf die Anwendung fortschrittlicher Datenanalysetechniken auf große und komplexe Datensätze, die im Agrarsektor generiert werden. Dabei werden riesige Datenmengen aus verschiedenen Quellen wie Sensoren, Satelliten, Drohnen, Wetterstationen und landwirtschaftlichen Geräten gesammelt, verarbeitet und analysiert, um wertvolle Erkenntnisse zu gewinnen und Entscheidungsprozesse in der Landwirtschaft und im Agrarmanagement zu unterstützen.
Data Bridge Market Research analysiert, dass der globale Markt für Big Data Analytics in der Landwirtschaft, der im Jahr 2022 1,24 Milliarden USD betrug, bis 2030 voraussichtlich 3,95 Milliarden USD erreichen wird und im Prognosezeitraum von 2023 bis 2030 eine durchschnittliche jährliche Wachstumsrate von 15,60 % aufweisen wird. „Datenerfassung“ dominiert das Typensegment des globalen Marktes für Big Data Analytics in der Landwirtschaft, da Daten das grundlegende Element sind, das den gesamten Analyseprozess antreibt. Neben Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch eingehende Expertenanalysen, geografisch dargestellte Produktion und Kapazität nach Unternehmen, Netzwerklayouts von Händlern und Partnern, detaillierte und aktuelle Preistrendanalysen und Defizitanalysen von Lieferkette und Nachfrage.
Big Data Analytics in der Landwirtschaft – Marktumfang und -segmentierung
Berichtsmetrik |
Einzelheiten |
Prognosezeitraum |
2023 bis 2030 |
Basisjahr |
2022 |
Historische Jahre |
2021 (anpassbar auf 2015–2020) |
Quantitative Einheiten |
Umsatz in Mrd. USD, Volumen in Tonnen, Preise in USD |
Abgedeckte Segmente |
Typ (Erfassung von Daten, Speicherung von Daten, Weitergabe von Daten, Analyse von Daten und andere), Anwendung (Pflanzenproduktion, Landmaschinen, Wetter und Chemikalien), Endverbraucher (Landwirte, Landwirtschaftsaufsichtsbehörden, Wettervorhersage, Agrochemie- und Landmaschinenindustrie) |
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika, Brasilien, Argentinien und Restliches Südamerika. |
Abgedeckte Marktteilnehmer |
NTT Data Corporation (Japan), The Climate Corporation (USA), OnFarm (USA), Farmers Edge Inc. (Kanada), Agribiotix (USA), AgDNA (USA), Awhere (USA), Farmersedge (Kanada) und Conservis (USA) |
Marktchancen |
|
Marktdefinition
Sammeln von Daten aus verschiedenen Quellen in der Landwirtschaft, wie zum Beispiel Sensoren, Satelliten, Drohnen, Wetterstationen und landwirtschaftliche Geräte. Diese Daten können Informationen über Bodenbeschaffenheit, Wettermuster, Pflanzenwachstum, Gesundheit des Viehbestands und mehr enthalten. Kombinieren und Integrieren von Daten aus mehreren Quellen und Formaten in einen einheitlichen und strukturierten Datensatz zur Analyse. Dies kann eine Datenbereinigung und -transformation umfassen, um die Datenqualität sicherzustellen. Big Data Analytics in der Landwirtschaft zielt darauf ab, die Produktivität zu steigern, Kosten zu senken, die Nachhaltigkeit zu erhöhen und zur globalen Nahrungsmittelsicherheit beizutragen, indem das Potenzial der Daten genutzt wird, um fundiertere und präzisere Entscheidungen entlang der gesamten landwirtschaftlichen Wertschöpfungskette zu treffen.
Globale Big Data Analytics in der Landwirtschaft Marktdynamik
Treiber
- Erhöhung der Datenverfügbarkeit
Die zunehmende Verfügbarkeit von Daten aus verschiedenen Quellen, darunter Sensoren, Satelliten und Drohnen, ist ein Haupttreiber. Diese Daten liefern wertvolle Einblicke in den Zustand von Pflanzen, Wettermuster und die Bodengesundheit. Die Datenverfügbarkeit ist ein entscheidender Faktor für den Erfolg von Big Data Analytics in der Landwirtschaft. Um die Leistungsfähigkeit von Datenanalysen in der Landwirtschaft effektiv nutzen zu können, ist es wichtig, Zugriff auf eine breite Palette von Daten aus verschiedenen Quellen zu haben.
- Technologische Fortschritte
Fortschritte in der Datenanalyse, im maschinellen Lernen und in IoT-Technologien ermöglichen eine ausgefeiltere Datenanalyse, Vorhersage und Entscheidungsunterstützung in der Landwirtschaft. Fortschrittliche Sensoren, darunter Bodenfeuchtesensoren, Temperatursensorenund Fernerkundungsgeräte, die an Drohnen und Satelliten montiert sind, sind erschwinglicher und zugänglicher geworden. Diese Sensoren liefern Echtzeitdaten über Bodenbedingungen, Wettermuster, den Gesundheitszustand von Nutzpflanzen und vieles mehr, sodass Landwirte ihre Felder präzise überwachen können.
Gelegenheiten
- Präzisionslandwirtschaft
Big Data Analytics ermöglicht Präzisionslandwirtschaft, indem es Echtzeiteinblicke liefert. Landwirte können Inputs wie Wasser, Dünger und Pestizide optimieren, was zu höheren Erträgen und Ressourceneffizienz führt. Präzisionslandwirtschaft basiert auf der Erfassung riesiger Datenmengen aus verschiedenen Quellen, darunter Sensoren, Satelliten, Drohnen und Landmaschinen. Diese Datenquellen liefern Echtzeitinformationen über Bodenbedingungen, Wettermuster, Pflanzengesundheit und mehr. Big Data Analytics-Plattformen aggregieren und verarbeiten diese Daten, um ein umfassendes Bild des landwirtschaftlichen Betriebs zu erstellen.
- Marktintelligenz
Landwirte können Datenanalysen nutzen, um Markttrends zu überwachen, Preisstrategien zu optimieren und fundierte Entscheidungen über die Auswahl und den Anbau von Nutzpflanzen zu treffen. Marktinformationen beginnen mit der Datenerfassung. Dazu gehört das Sammeln von Informationen aus verschiedenen Quellen, wie z. B. Regierungsberichten, Fachpublikationen, sozialen Medien, Wetterdaten, Rohstoffpreisen und Lieferkettendaten. Big Data-Analysesysteme können sowohl strukturierte als auch unstrukturierte Daten aus diesen Quellen verarbeiten.
Einschränkungen/Herausforderungen
- Datenschutzbedenken
Landwirte zögern möglicherweise, ihre Daten weiterzugeben, weil sie Datenschutzbedenken haben und Angst vor Missbrauch durch Dritte haben. Landwirtschaftliche Daten enthalten häufig persönliche Informationen über Landwirte wie Namen, Kontaktdaten und Finanzdaten. Der Schutz dieser persönlichen Daten vor unbefugtem Zugriff und Missbrauch ist von entscheidender Bedeutung. Viele landwirtschaftliche Technologien wie GPS-fähige Geräte und Drohnen erfassen Standortdaten. Die Offenlegung dieser Daten kann zu Datenschutzverletzungen und potenziellen Sicherheitsrisiken führen, wenn sie nicht angemessen geschützt werden.
- Datenintegration
Die Integration von Daten aus unterschiedlichen Quellen und Formaten kann komplex sein. Sie erfordert standardisierte Datenformate und Interoperabilität zwischen verschiedenen Datensystemen. Ölfeuchtigkeitssensoren, Wetterstationen, mit GPS ausgestattete landwirtschaftliche Geräte und Geräte zur Viehbestandsüberwachung erzeugen Echtzeitdaten. Satelliten und Drohnen erfassen hochauflösende Bilder von Feldern, die Einblicke in den Gesundheitszustand und das Wachstum von Nutzpflanzen geben.
Auswirkungen von Rohstoffknappheit und Lieferverzögerungen und aktuelles Marktszenario
Data Bridge Market Research bietet eine umfassende Marktanalyse und liefert Informationen, indem es die Auswirkungen und das aktuelle Marktumfeld von Rohstoffknappheit und Lieferverzögerungen berücksichtigt. Dies bedeutet, dass strategische Möglichkeiten bewertet, wirksame Aktionspläne erstellt und Unternehmen bei wichtigen Entscheidungen unterstützt werden.
Neben dem Standardbericht bieten wir auch detaillierte Analysen des Beschaffungsniveaus anhand prognostizierter Lieferverzögerungen, Händlerzuordnung nach Regionen, Warenanalysen, Produktionsanalysen, Preiszuordnungstrends, Beschaffung, Kategorieleistungsanalysen, Lösungen zum Lieferkettenrisikomanagement, erweitertes Benchmarking und andere Dienste für Beschaffung und strategische Unterstützung.
Erwartete Auswirkungen der Konjunkturabschwächung auf die Preisgestaltung und Verfügbarkeit von Produkten
Wenn die Wirtschaftstätigkeit nachlässt, leiden auch die Branchen darunter. Die prognostizierten Auswirkungen des Konjunkturabschwungs auf die Preisgestaltung und Verfügbarkeit der Produkte werden in den von DBMR bereitgestellten Markteinblickberichten und Informationsdiensten berücksichtigt. Damit sind unsere Kunden ihren Konkurrenten in der Regel immer einen Schritt voraus, können ihre Umsätze und Erträge prognostizieren und ihre Gewinn- und Verlustaufwendungen abschätzen.
Die neueste Entwicklung
- Im November 2020 bietet SAS Institute Inc. in Partnerschaft mit Boragen Inc. eine Plattform zur Kombination von Pflanzenwissenschaften und Datenwissenschaft an, um Nutzpflanzen vor Pflanzenkrankheiten zu schützen. Die Unternehmen nutzen künstliche Intelligenz und maschinelles Lernen, um die Daten zu untersuchen und den Schaden in Echtzeit vorherzusagen.
Globaler Marktumfang für Big Data Analytics in der Landwirtschaft
Der globale Markt für Big Data Analytics in der Landwirtschaft ist nach Typ, Anwendung und Endbenutzer segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Typ
- Daten erfassen
- Daten speichern
- Weitergabe von Daten
- Daten analysieren
- Andere
Anwendung
- Pflanzenproduktion
- Landmaschinen
- Wetter
- Chemikalien
Endnutzer
- Bauern
- Regulierungsbehörden für die Landwirtschaft
- Wettervorhersage
- Agrochemikalien
- Landmaschinenindustrie
Globale Big Data Analytics im Agrarmarkt – Regionale Analyse/Einblicke
Der globale Markt für Big Data-Analysen im Agrarbereich wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Typ, Anwendung und Endbenutzern wie oben angegeben bereitgestellt.
Die im globalen Marktbericht zur Big Data-Analyse in der Landwirtschaft abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika, Brasilien, Argentinien und Restliches Südamerika
Der asiatisch-pazifische Raum dominiert den globalen Markt für Big Data-Analysen im Agrarbereich, da dort eine große Zahl von Unternehmen die Ergebnisse von Big Data nutzt, um den Zustand der Ernte vorherzusagen.
Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken, die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und globale Big Data Analytics in der Landwirtschaft Marktanteilsanalyse
Die Wettbewerbslandschaft des globalen Marktes für Big Data Analytics in der Landwirtschaft liefert Details zu den Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den globalen Markt für Big Data Analytics in der Landwirtschaft.
Zu den wichtigsten Akteuren auf dem globalen Markt für Big Data-Analysen in der Landwirtschaft zählen:
- NTT Data Corporation (Japan)
- The Climate Corporation (USA)
- OnFarm (USA)
- Farmers Edge Inc. (Kanada)
- Agribiotix (USA)
- AgDNA (USA)
- Irgendwo (USA)
- Farmersedge (Kanada)
- Conservis (USA)
Artikelnummer-