Global Ai Agriculture Market
Marktgröße in Milliarden USD
CAGR :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
Globaler Markt für Künstliche Intelligenz in der Landwirtschaft, nach Angebot (Hardware, Software und Dienstleistungen), Technologie (Maschinelles Lernen (ML), Computer Vision, Verarbeitung natürlicher Sprache (NLP), Robotik & Automatisierung und Sonstiges), Anwendung (Präzisionslandwirtschaft, Tierüberwachung, Wettervorhersage, Bodenmanagement, Pflanzengesundheitsüberwachung, Optimierung der Lieferkette und Sonstiges), Bereitstellungsmodus (On-Premise und Cloud), Endnutzer (Landwirtschaftliche Betriebe, Agrartechnologieunternehmen, Agrochemieunternehmen, Forschungsinstitute und Sonstiges) – Branchentrends und Prognose bis 2032
Marktgröße für künstliche Intelligenz in der Landwirtschaft
Data Bridge Market Research prognostiziert, dass der globale Markt für künstliche Intelligenz in der Landwirtschaft bis 2032 ein Volumen von 10,49 Milliarden US-Dollar erreichen wird, mit 2,08 Milliarden US-Dollar im Jahr 2025. Dies entspricht einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 22,39 % im Prognosezeitraum. Der Bericht zum globalen Markt für künstliche Intelligenz in der Landwirtschaft umfasst zudem eine umfassende Preisanalyse, eine Patentanalyse sowie Informationen zu technologischen Fortschritten.
Marktanalyse für künstliche Intelligenz in der Landwirtschaft
Der globale Markt für künstliche Intelligenz in der Landwirtschaft steht vor einem deutlichen Wachstum, angetrieben von mehreren Schlüsselfaktoren. Haupttreiber ist die signifikante Kostenreduzierung, die TEM-Lösungen bieten und die Unternehmen anspricht, die ihre Telekommunikationskosten optimieren möchten. Die zunehmende Verbreitung von Mobiltelefonen und anderen mobilen Geräten befeuert die Nachfrage nach effektiven Lösungen für das Kostenmanagement zusätzlich. TEM sorgt für entscheidende Kostentransparenz und ermöglicht es Unternehmen, ihre Telekommunikationskosten besser zu verstehen und zu kontrollieren. Darüber hinaus hat der Aufstieg des Internets der Dinge (IoT) und cloudbasierter Anwendungen zu einer höheren Nachfrage nach TEM-Lösungen geführt, da diese Technologien neue Komplexitäten im Telekommunikationskostenmanagement mit sich bringen. Der Markt steht jedoch vor Herausforderungen, insbesondere der Einhaltung unterschiedlicher Telekommunikationsvorschriften und Compliance-Anforderungen in verschiedenen Regionen, was die Implementierung und das Management erschwert. Trotz dieser Herausforderungen bieten sich erhebliche Wachstumschancen. Automatisierungstechnologien für das Telekommunikationskostenmanagement stellen ein bedeutendes Potenzial dar, ebenso wie das Outsourcing von TEM-Lösungen, das Kosteneffizienz und Expertise bieten kann.
|
Berichtsmetrik |
Details |
|
Prognosezeitraum |
2025 bis 2032 |
|
Basisjahr |
2024 |
|
Historische Jahre |
2023 (2018–2022) |
|
Quantitative Einheiten |
Umsatz in Milliarden US-Dollar |
|
Abgedeckte Segmente |
Durch das Angebot (Hardware, Software und Dienstleistungen), die Technologie [Maschinelles Lernen (ML), Computer Vision , Verarbeitung natürlicher Sprache (NLP) , Robotik und Automatisierung und andere], die Anwendung ( Präzisionslandwirtschaft , Tierüberwachung , Wettervorhersage, Bodenmanagement, Überwachung der Pflanzengesundheit, Optimierung der Lieferkette und andere), den Bereitstellungsmodus (On-Premise und Cloud), den Endnutzer (Landwirtschaftliche Betriebe, Agrartechnologieunternehmen, Agrochemieunternehmen, Forschungsinstitute und andere) |
|
Abgedeckte Länder |
USA, Kanada und Mexiko, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, übriges Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, übriges Asien-Pazifik, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, übriger Naher Osten und Afrika, Brasilien, Argentinien und übriges Südamerika |
|
Abgedeckte Marktteilnehmer |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, Kubota Corporation, Yanmar Holdings Co., Ltd., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, Valmont Industries, Inc., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, Syngenta Global, Corteva und Bowery Farming Inc. u. a. |
Marktdefinition
Der globale Markt für künstliche Intelligenz in der Landwirtschaft umfasst Technologien und Lösungen, die KI zur Verbesserung landwirtschaftlicher Praktiken nutzen. Dazu gehören maschinelles Lernen, Computer Vision und Robotik zur Optimierung von Pflanzenmanagement, Präzisionslandwirtschaft und Ressourcenverteilung. Der Markt beinhaltet KI-gestützte Werkzeuge für die Datenanalyse, autonome Maschinen und prädiktive Analysen mit dem Ziel, Effizienz, Ertrag und Nachhaltigkeit in der Landwirtschaft zu steigern. Er dient einer Vielzahl von Anwendungen, darunter Pflanzenüberwachung, Bodenmanagement, Schädlingsbekämpfung und Optimierung der Lieferkette.
Globale Marktdynamik der künstlichen Intelligenz in der Landwirtschaft
Fahrer
- Steigerung der Genauigkeit bei der Pflanzenüberwachung und Ertragsprognose
Künstliche Intelligenz (KI) in der Landwirtschaft verbessert die Überwachung von Nutzpflanzen und die Genauigkeit von Ertragsprognosen. Durch den Einsatz von Algorithmen des maschinellen Lernens und Datenanalysen kann KI riesige Datenmengen aus verschiedenen Quellen wie Satellitenbildern, Bodensensoren und Wettervorhersagen auswerten. Dies ermöglicht Landwirten, den Gesundheitszustand ihrer Pflanzen zu überwachen, Schädlingsbefall zu erkennen und Erträge genauer vorherzusagen. Die KI-gestützten Erkenntnisse tragen somit dazu bei, die Ressourcenzuteilung zu optimieren, die Entscheidungsfindung zu verbessern und die landwirtschaftliche Gesamtproduktivität zu steigern.
Zum Beispiel,
- Laut einem Blogbeitrag von Gramener aus dem Juli 2021 gewann die Ertragsprognose mithilfe von maschinellem Lernen und KI zunehmend an Bedeutung. Der Artikel beschrieb, wie räumliche Analysen und IoT-Geräte die Pflanzenüberwachung und Ertragsprognose verbesserten. KI- und Machine-Learning-Modelle, die Satellitenbilder und Klimadaten nutzten, erhöhten die Genauigkeit der Ertragsprognosen durch die Bewertung von Bodenbeschaffenheit und Wettermustern. Der Einsatz dieser Technologien kam Landwirten zugute, da er Fernüberwachung, effiziente Ressourcenkartierung und prädiktive Analysen ermöglichte und somit bessere Entscheidungen und Planungen unterstützte. Dieser Fortschritt trägt zu einem effektiveren Pflanzenmanagement bei.
Zunehmende Implementierung verbesserter Anbautechniken mithilfe von KI
Die verstärkte Anwendung verbesserter Anbaumethoden mithilfe von KI beinhaltet die Optimierung des Einsatzes von Betriebsmitteln wie Wasser, Dünger und Pflanzenschutzmitteln. KI-gestützte Lösungen ermöglichen ein präzises Management dieser Ressourcen und gewährleisten deren effiziente und bedarfsgerechte Anwendung. Dies senkt die Kosten und steigert die Produktivität durch Abfallminimierung und Ertragsmaximierung, was letztendlich zu nachhaltigeren und rentableren Anbaumethoden führt.
Zum Beispiel,
- Laut einem im Januar 2024 von Intellias veröffentlichten Artikel hatte KI die Landwirtschaft durch die Verbesserung von Anbaumethoden maßgeblich beeinflusst. KI ermöglichte die präzise Steuerung von Wasser, Düngemitteln und Pflanzenschutzmitteln, wodurch Kosten gesenkt und die Produktivität gesteigert wurden. Automatisierte Systeme optimierten Bewässerung und Düngung, was zu höheren Ernteerträgen und einer effizienteren Ressourcennutzung führte. Diese Fortschritte unterstützten nachhaltigere und rentablere Anbaumethoden, von denen Landwirte letztendlich durch höhere Erträge und Kosteneinsparungen profitierten.
Gelegenheit
- Automatisierungstechnologie für das Telekommunikationskostenmanagement
Automatisierungstechnologie für das Telekommunikationskostenmanagement (TEM) optimiert Prozesse, erhöht die Genauigkeit und senkt Kosten. Durch den Einsatz automatisierter Tools und Software können Telekommunikationsanbieter und Unternehmen Rechnungen effizient verwalten, Ausgaben verfolgen und Nutzungsmuster in Echtzeit analysieren. Diese Technologie verbessert Transparenz und Kontrolle und ermöglicht proaktive Entscheidungen auf Basis datengestützter Erkenntnisse. Darüber hinaus minimiert die Automatisierung menschliche Fehler, gewährleistet die Einhaltung regulatorischer Vorgaben und optimiert die Ressourcenzuweisung, wodurch TEM zu einem strategischen Vorteil wird.
Zum Beispiel,
- Laut einem im Juli 2022 von Brightfin veröffentlichten Artikel brachte die Umstellung auf ein automatisiertes Telekommunikationskostenmanagementsystem mehrere Vorteile. Erstens reduzierte sie die Anzahl der Helpdesk-Tickets im Zusammenhang mit Telekommunikationsproblemen deutlich und entlastete so die IT-Abteilung. Die Automatisierung sparte den Mitarbeitern zudem Zeit, indem sie Routineaufgaben wie Rechnungsverarbeitung und Spesenabrechnung übernahm und ihnen ermöglichte, sich auf wichtigere Projekte zu konzentrieren. Darüber hinaus verringerte die Automatisierung menschliche Fehler und sorgte für Konsistenz und Effizienz im Betrieb. Schließlich lieferte das System wertvolle Dateneinblicke und trug durch optimierte Telekommunikationskostenmanagementprozesse zur Kostensenkung bei.
- Laut einem Artikel der PAG revolutioniert die Automatisierung das Telekommunikationskostenmanagement. Sie hat Aufgaben wie die Nutzungsüberwachung und den Rechnungsabgleich optimiert, was insbesondere für Krankenhäuser und Gesundheitseinrichtungen von Vorteil ist. Automatisierte Lösungen reduzieren den Zeit- und Arbeitsaufwand für Audits und ermöglichen erhebliche Einsparungen durch die Optimierung der Gerätenutzung und Telekommunikationsverträge.
Zurückhaltung/Herausforderung
- Anhaltende Bedenken hinsichtlich Datenschutz und Datensicherheit
Trotz der vielversprechenden Fortschritte im Bereich der KI für die Landwirtschaft werden diese Vorteile durch anhaltende Bedenken hinsichtlich Datenschutz und Datensicherheit überschattet. Da KI-Systeme große Mengen sensibler Agrardaten, darunter Ernteerträge, Bodenbeschaffenheit und Betriebsabläufe, erfassen und analysieren, setzen sie Landwirte erheblichen Risiken aus. Unbefugter Zugriff und Datenschutzverletzungen können schwerwiegende Folgen haben, wie den Verlust geistigen Eigentums, die Manipulation sensibler Informationen und eine erhöhte Anfälligkeit für Cyberangriffe. Diese Sicherheitsprobleme untergraben das Vertrauen in KI-Technologien und behindern deren breite Anwendung.
Zum Beispiel
- Laut einem Blogbeitrag von ShardSecure vom August 2023 sah sich die Landwirtschaft zunehmenden Bedenken hinsichtlich Datenschutz und Datensicherheit ausgesetzt. Cyberangriffe, wie der Ransomware-Angriff auf JBS Foods im Jahr 2021, verdeutlichten die Verwundbarkeit des Sektors. Durch die Präzisionslandwirtschaft, die riesige Datenmengen generiert, und den Aufstieg von IoT-Geräten haben sich die Risiken verstärkt. Das neu gegründete Food and Agriculture Information Sharing and Analysis Center (FAISAC) hatte sich zum Ziel gesetzt, diese Probleme anzugehen. Viele Agrarunternehmen kämpfen jedoch weiterhin mit Datensicherheit, Compliance und dem Schutz vor KI-bezogenen Bedrohungen. Verbesserte Sicherheitsmaßnahmen können Unternehmen zugutekommen, indem sie sensible Daten schützen und das Risiko kostspieliger Ausfälle verringern.
Auswirkungen von Covid-19 auf den globalen Markt für künstliche Intelligenz in der Landwirtschaft
Die Lage nach COVID-19 hat den globalen Markt erheblich beeinflusst. Mit der allmählichen Erholung der Wirtschaft rückt die Infrastrukturentwicklung jedoch stärker in den Fokus, was zu einem erneuten Projektboom führt. Die Branche passt sich den neuen Gegebenheiten an, indem sie Sicherheitsprotokolle verbessert und digitale Technologien zur Prozessoptimierung einsetzt. Die Nachfrage nach Telekommunikationsdiensten erholt sich, da Bauprojekte wieder an Fahrt gewinnen. Dies bietet Marktteilnehmern die Möglichkeit, zum Infrastrukturwachstum des Landes in der Zeit nach der Pandemie beizutragen.
Aktuelle Entwicklungen
Zum Beispiel,
- Im Juni 2024 brachte TeeJet Technologies den elektromagnetischen Durchflussmesser FM9380-F75 auf den Markt. Dieser zeichnet sich durch ein innovatives Design ohne bewegliche Teile für wartungsfreien Betrieb, optimierte Leistung unter verschiedenen Flüssigkeitsbedingungen und breite Anwendungskompatibilität aus. Dadurch wird das Produktportfolio für Präzisionslandwirtschaft erweitert und die betriebliche Effizienz gesteigert.
- Im November 2023 präsentierte die Kubota Corporation auf der Agritechnica den Agri Robo KVT und markierte damit einen bedeutenden Fortschritt in der autonomen Landwirtschaft. Dieser verbesserte Traktor begegnete dem Arbeitskräftemangel, erhöhte die Sicherheit und förderte eine effizientere Landwirtschaft, wodurch Kubota seine Wettbewerbsfähigkeit und Innovationsführerschaft ausbaute.
Umfang des globalen Marktes für künstliche Intelligenz in der Landwirtschaft
Der Markt für künstliche Intelligenz in der Landwirtschaft ist in fünf wesentliche Segmente unterteilt, basierend auf Angebot, Technologie, Anwendung, Bereitstellungsmodus und Endnutzer. Das Wachstum dieser Segmente ermöglicht die Analyse von Segmenten mit geringem Wachstum in der Branche und bietet Nutzern einen wertvollen Marktüberblick sowie Einblicke, die sie bei strategischen Entscheidungen zur Identifizierung zentraler Marktanwendungen unterstützen.
Dieser Forschungsbericht unterteilt den globalen Markt für künstliche Intelligenz in der Landwirtschaft in die folgenden Segmente:
ANGEBOT
- HARDWARE
- SOFTWARE
- DIENSTLEISTUNGEN
Auf Basis des Angebots ist der Markt in Hardware, Software und Dienstleistungen unterteilt.
TECHNOLOGIE
- Maschinelles Lernen (ML)
- COMPUTERVISION
- Verarbeitung natürlicher Sprache (NLP)
- ROBOTIK & AUTOMATISIERUNG
- ANDERE
Auf technologischer Basis ist der Markt in maschinelles Lernen (ML), Computer Vision, Verarbeitung natürlicher Sprache (NLP), Robotik & Automatisierung und Sonstiges unterteilt.
ANWENDUNG
- PRÄZISIONSLANDWIRTSCHAFT
- Viehüberwachung
- WETTERVORHERSAGE
- BODENMANAGEMENT
- Überwachung der Pflanzengesundheit
- Optimierung der Lieferkette
- ANDERE
Auf Basis der Anwendungsbereiche wird der Markt in Präzisionslandwirtschaft, Tierüberwachung, Wettervorhersage, Bodenmanagement, Überwachung der Pflanzengesundheit, Optimierung der Lieferkette und Sonstiges unterteilt.
EINSATZMODUS
- WOLKE
- VOR ORT
Auf Basis des Bereitstellungsmodus wird der Markt in Cloud und On-Premise unterteilt.
ENDBENUTZER
- BAUERNHÄUSER
- AGRARTECHNOLOGIEUNTERNEHMEN
- Agrochemische Unternehmen
- FORSCHUNGSINSTITUTE
- ANDERE
Auf Basis der Endnutzer wird der Markt in landwirtschaftliche Betriebe, Agrartechnologieunternehmen, Agrochemieunternehmen, Forschungsinstitute und Sonstige unterteilt.
Globaler Markt für künstliche Intelligenz in der Landwirtschaft
Der globale Markt für künstliche Intelligenz in der Landwirtschaft ist in fünf Hauptsegmente unterteilt, basierend auf Angebot, Technologie, Anwendung, Bereitstellungsmodell und Endnutzer. Die Länder, die im globalen Markt für das Internet der Dinge (IoT) in der Landwirtschaft abgedeckt werden, sind: USA, Kanada und Mexiko in Nordamerika; Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei und das übrige Europa; China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen und das übrige Asien-Pazifik; Saudi-Arabien, die Vereinigten Arabischen Emirate, Südafrika, Ägypten, Israel und der übrige Nahe Osten und Afrika; Brasilien, Argentinien und das übrige Südamerika.
In Nordamerika dominieren die USA als Land mit den meisten Anbietern von Hardwarekomponenten. Auch in Europa ist Großbritannien aufgrund seines technologischen Fortschritts führend. Im asiatisch-pazifischen Raum dominiert China, da das Land die meisten Hersteller von Hardwarekomponenten in der Region beheimatet.
Der Länderteil des Berichts analysiert zudem individuelle Markteinflussfaktoren und regulatorische Änderungen, die sich auf aktuelle und zukünftige Marktentwicklungen auswirken. Datenpunkte wie die Analyse der vor- und nachgelagerten Wertschöpfungskette, technische Trends, die Fünf-Kräfte-Analyse nach Porter sowie Fallstudien dienen als Indikatoren für die Prognose des Marktszenarios in den einzelnen Ländern. Auch die Präsenz und Verfügbarkeit von Marken im asiatisch-pazifischen Raum (APAC) und die Herausforderungen, denen sie sich aufgrund starker oder schwacher Konkurrenz durch lokale und nationale Marken gegenübersehen, die Auswirkungen nationaler Zölle und Handelswege werden bei der Prognoseanalyse der Länderdaten berücksichtigt.
Wettbewerbslandschaft und globale Marktanteilsanalyse für künstliche Intelligenz in der Landwirtschaft
Die Wettbewerbslandschaft des globalen Marktes für künstliche Intelligenz in der Landwirtschaft bietet detaillierte Informationen zu den einzelnen Wettbewerbern. Dazu gehören Unternehmensübersicht, Finanzkennzahlen, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, Präsenz in der Region Asien-Pazifik und Südostasien, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführungen, Produktportfolio und Anwendungsdominanz. Die genannten Daten beziehen sich ausschließlich auf den Fokus der Unternehmen auf den globalen Markt für künstliche Intelligenz in der Landwirtschaft. Zu den wichtigsten Akteuren auf diesem Markt zählen unter anderem Open Text Corporation, OpenAI, Valmont Industries, Inc., AGCO Corporation und IBM.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

