Global Ai Agriculture Market
Marktgröße in Milliarden USD
CAGR :
%

![]() |
2026 –2032 |
![]() | USD 2.08 Billion |
![]() | USD 10.49 Billion |
![]() |
|
![]() |
>Global Artificial Intelligence in Agriculture Market, By Offering (Hardware, Software, and Services), Technology [Machine Learning (ML), Computer Vision, Natural Language Processing (NLP), Robotics & Automation, and Others], Application (Precision Farming, Livestock Monitoring, Weather Forecasting, Soil Management, Crop Health Monitoring, Supply Chain Optimization, and Others), Deployment Mode (On-Premise, and Cloud), End User (Farms, Agro-Tech Companies. Agrochemical Companies, Research Institutes, and Others) - Industry Trends and Forecast to 2031.
Artificial Intelligence in Agriculture Market Analysis and Size
Global artificial intelligence in agriculture market is poised for substantial growth, driven by several key factors. The primary driver is the significant cost reduction TEM solutions offer, which appeals to businesses aiming to optimize their telecom expenditures. The increasing adoption of mobile phones and other portable devices further fuels the demand for effective expense management solutions. TEM provides critical expense transparency, enabling organizations to better understand and control their telecom spending. Additionally, the rise of IoT and cloud-based applications has led to a higher demand for TEM solutions, as these technologies introduce new complexities in telecom expense management. However, the market faces restraints, notably the challenge of adhering to varying telecom regulations and compliance requirements across different regions, which complicates implementation and management. Despite these challenges, there are considerable opportunities for growth. Automation technology for telecom expense management presents a significant opportunity, as does the outsourcing of TEM solutions, which can offer cost efficiencies and expertise.
Data Bridge Market Research analyses that the global artificial intelligence in agriculture market is expected to reach a value of USD 8.5 billion by 2031, at a CAGR of 22.4% during the forecast period. Global artificial intelligence in agriculture market report also comprehensively covers pricing analysis, patent analysis, and technological advancements.
Report Metric |
Details |
Forecast Period |
2024 to 2031 |
Base Year |
2023 |
Historic Years |
2022 |
Quantitative Units |
Revenue in USD Billion |
Segments Covered |
By Offering (Hardware, Software, and Services), Technology [Machine Learning (ML), Computer Vision, Natural Language Processing (NLP), Robotics & Automation, and Others), Application (Precision Farming, Livestock Monitoring, Weather Forecasting, Soil Management, Crop Health Monitoring, Supply Chain Optimization, and Others), Deployment Mode (On-Premise, and Cloud), End-User (Farms, Agro-Tech Companies. Agrochemical Companies, Research Institutes, Others) |
Countries Covered |
USA, Kanada und Mexiko, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, übriges Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, übriger Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, übriger Naher Osten und Afrika, Brasilien, Argentinien und übriges Südamerika |
Abgedeckte Marktteilnehmer |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva und Bowery Farming Inc. unter anderem |
Marktdefinition
Der globale Markt für künstliche Intelligenz in der Landwirtschaft umfasst Technologien und Lösungen, die KI nutzen, um landwirtschaftliche Praktiken zu verbessern. Dazu gehören maschinelles Lernen, Computervision und Robotik zur Optimierung des Pflanzenmanagements, der Präzisionslandwirtschaft und der Ressourcenzuweisung. Der Markt umfasst KI-gesteuerte Tools für Datenanalyse, autonome Maschinen und prädiktive Analysen, die darauf abzielen, die Effizienz, den Ertrag und die Nachhaltigkeit landwirtschaftlicher Betriebe zu steigern. Er deckt ein breites Anwendungsspektrum ab, darunter Ernteüberwachung, Bodenmanagement, Schädlingsbekämpfung und Lieferkettenoptimierung.
Globale Marktdynamik für künstliche Intelligenz in der Landwirtschaft
In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:
Treiber
- Verbesserte Ernteüberwachung und Genauigkeit der Ertragsvorhersage
Künstliche Intelligenz (KI) in der Landwirtschaft verbessert die Ernteüberwachung und die Genauigkeit der Ertragsvorhersage. Durch den Einsatz von Algorithmen des maschinellen Lernens und Datenanalyse kann KI große Datenmengen aus verschiedenen Quellen wie Satellitenbildern, Bodensensoren und Wettervorhersagen analysieren. Auf diese Weise können Landwirte den Gesundheitszustand ihrer Pflanzen überwachen, Schädlingsbefall erkennen und Erträge genauer vorhersagen. Folglich helfen KI-gestützte Erkenntnisse dabei, die Ressourcenzuweisung zu optimieren, die Entscheidungsfindung zu verbessern und die landwirtschaftliche Gesamtproduktivität zu steigern.
Zum Beispiel,
- Laut dem im Juli 2021 von Gramener veröffentlichten Blog wurde die Vorhersage von Ernteerträgen mithilfe von maschinellem Lernen und KI immer relevanter. Der Artikel diskutierte, wie räumliche Analysen und IoT-Geräte die Ernteüberwachung und Ertragsvorhersage verbesserten. KI- und maschinelle Lernmodelle, die Satellitenbilder und Klimadaten nutzen, verbesserten die Genauigkeit bei der Vorhersage von Ernteerträgen durch die Bewertung von Bodenbedingungen und Wettermustern. Der Einsatz dieser Technologien kam den landwirtschaftlichen Erzeugern zugute, da sie Fernüberwachung, effiziente Ressourcenkartierung und prädiktive Analysen ermöglichten, die eine bessere Entscheidungsfindung und Planung ermöglichten. Dieser Fortschritt unterstützt ein effektiveres Erntemanagement
Zunehmende Umsetzung besserer landwirtschaftlicher Techniken mit KI
Um mithilfe von KI bessere landwirtschaftliche Techniken zu implementieren , muss der Einsatz von Betriebsmitteln wie Wasser, Düngemitteln und Pestiziden optimiert werden. KI-gesteuerte Lösungen ermöglichen eine präzise Verwaltung dieser Ressourcen und stellen sicher, dass sie effizient und nur dort eingesetzt werden, wo sie benötigt werden. Dies senkt die Kosten und steigert die Produktivität, indem Abfall minimiert und Ernteerträge maximiert werden, was letztendlich zu nachhaltigeren und rentableren landwirtschaftlichen Praktiken führt.
Zum Beispiel,
- Laut einem im Januar 2024 von Intellias veröffentlichten Artikel hatte KI erhebliche Auswirkungen auf die Landwirtschaft, indem sie die landwirtschaftlichen Techniken verbesserte. KI ermöglichte eine präzise Verwaltung von Wasser, Düngemitteln und Pestiziden, wodurch Kosten gesenkt und die Produktivität gesteigert wurden. Automatisierte Systeme optimierten die Bewässerung und Düngung, was zu besseren Ernteerträgen und Ressourceneffizienz führte. Diese Fortschritte unterstützten nachhaltigere und rentablere landwirtschaftliche Praktiken und kamen den Landwirten letztlich durch verbesserte Erträge und Kosteneinsparungen zugute.
Gelegenheit
- Automatisierungstechnologie für das Telekommunikationskostenmanagement
Automatisierungstechnologie für Telecom Expense Management (TEM) rationalisiert Prozesse, verbessert die Genauigkeit und senkt die Kosten. Durch den Einsatz automatisierter Tools und Software können Telekommunikationsbetreiber und Unternehmen Rechnungen effizient verwalten, Ausgaben verfolgen und Nutzungsmuster in Echtzeit analysieren. Diese Technologie verbessert Transparenz und Kontrolle und ermöglicht proaktive Entscheidungen auf der Grundlage datengesteuerter Erkenntnisse. Darüber hinaus minimiert die Automatisierung menschliche Fehler, gewährleistet die Einhaltung gesetzlicher Anforderungen und optimiert die Ressourcenzuweisung, wodurch TEM zu einem strategischen Aktivposten wird.
Zum Beispiel,
- Laut einem im Juli 2022 von Brightfin veröffentlichten Artikel brachte die Umstellung auf ein automatisiertes Telekommunikationsausgabenmanagementsystem mehrere Vorteile. Erstens reduzierte es die Anzahl der Helpdesk-Tickets im Zusammenhang mit Telekommunikationsproblemen erheblich und setzte IT-Ressourcen frei. Diese Automatisierung sparte den Mitarbeitern auch Zeit, indem sie Routineaufgaben wie Rechnungsverarbeitung und Ausgabenmanagement übernahmen, sodass sie sich auf wichtigere Projekte konzentrieren konnten. Darüber hinaus reduzierte die Automatisierung menschliche Fehler und sorgte für Konsistenz und Effizienz im Betrieb. Schließlich lieferte das System wertvolle Dateneinblicke und half, die Kosten durch optimierte Telekommunikationsmanagementprozesse zu senken
- Laut einem von der PAG veröffentlichten Artikel verändert die Automatisierung das Kostenmanagement im Telekommunikationsbereich. Sie hat Aufgaben wie die Überwachung der Nutzung und den Abgleich von Rechnungen rationalisiert, was insbesondere für Krankenhäuser und Gesundheitsorganisationen von Vorteil ist. Automatisierte Lösungen reduzieren den Zeit- und Arbeitsaufwand für Audits und ermöglichen erhebliche Einsparungen durch die Optimierung der Gerätenutzung und der Telekommunikationsverträge.
Einschränkung/Herausforderung
- Anhaltende Bedenken hinsichtlich Datenschutz und Sicherheit
Trotz der vielversprechenden Fortschritte bei der KI für die Landwirtschaft überschatten anhaltende Datenschutz- und Sicherheitsbedenken diese Vorteile. Da KI-Systeme große Mengen sensibler landwirtschaftlicher Daten, darunter Ernteerträge, Bodenbeschaffenheit und landwirtschaftliche Abläufe, sammeln und analysieren, setzen sie die Landwirte erheblichen Risiken aus. Unbefugter Zugriff und Verstöße gegen diese Daten können schwerwiegende Folgen haben, darunter den Verlust geistigen Eigentums, die Manipulation sensibler Informationen und eine erhöhte Anfälligkeit für Cyberangriffe. Diese Sicherheitsprobleme untergraben das Vertrauen in KI-Technologien und verhindern ihre breite Einführung.
Zum Beispiel
- Im August 2023 sah sich die Landwirtschaft laut einem von ShardSecure veröffentlichten Blog zunehmend mit Datenschutz- und Sicherheitsbedenken konfrontiert. Cyberangriffe wie der Ransomware-Angriff auf JBS Foods im Jahr 2021 machten die Verwundbarkeit des Sektors deutlich. Da die Präzisionslandwirtschaft riesige Datenmengen erzeugt und IoT-Geräte auf dem Vormarsch sind, haben sich die Risiken verschärft. Das neu gegründete Food and Agriculture Information Sharing and Analysis Center zielte darauf ab, diese Probleme anzugehen. Viele Agrarunternehmen haben jedoch immer noch Probleme mit der Datensicherheit, der Einhaltung von Vorschriften und dem Schutz vor KI-bezogenen Bedrohungen. Verbesserte Sicherheitsmaßnahmen können Unternehmen zugutekommen, indem sie sensible Daten schützen und das Risiko kostspieliger Störungen verringern
Auswirkungen von Covid-19 auf den globalen Markt für künstliche Intelligenz in der Landwirtschaft
Die Situation nach COVID-19 hat den globalen Markt erheblich beeinflusst. Da sich die Wirtschaft jedoch allmählich erholt, liegt der Fokus verstärkt auf der Entwicklung der Infrastruktur, was zu einer Wiederbelebung der Projekte führt. Die Branche passt sich mit verbesserten Sicherheitsprotokollen und digitalen Technologien zur Rationalisierung der Prozesse an neue Normen an. Die Nachfrage nach Telekommunikationsdiensten erholt sich, da Bauprojekte wieder an Dynamik gewinnen, was den Marktteilnehmern die Möglichkeit bietet, zum Infrastrukturwachstum des Landes in der Zeit nach der Pandemie beizutragen.
Jüngste Entwicklungen
Zum Beispiel,
- Im Juni 2024 brachte TeeJet Technologies den elektromagnetischen Durchflussmesser FM9380-F75 auf den Markt. Er zeichnet sich durch ein innovatives Design ohne bewegliche Teile für einen wartungsfreien Betrieb, eine optimierte Leistung bei allen Flüssigkeitsbedingungen und eine breite Anwendungskompatibilität aus, was das Produktportfolio des Unternehmens im Bereich Präzisionslandwirtschaft erweitert und die Betriebseffizienz steigert.
- Im November 2023 präsentierte die Kubota Corporation auf der Agritechnica den Agri Robo KVT, der einen bedeutenden Fortschritt in der autonomen Landwirtschaftstechnologie darstellt. Dieser verbesserte Traktor behebt den Arbeitskräftemangel, erhöht die Sicherheit und fördert eine effiziente Landwirtschaft, was Kubota zu einer erhöhten Marktwettbewerbsfähigkeit und Innovationsführerschaft verhilft
Globaler Markt für künstliche Intelligenz in der Landwirtschaft
Der Markt für künstliche Intelligenz in der Landwirtschaft ist in fünf wichtige Segmente unterteilt, die auf Angebot, Technologie, Anwendung, Bereitstellungsmodus und Endbenutzer basieren. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Dieser Forschungsbericht kategorisiert den globalen Markt für künstliche Intelligenz in der Landwirtschaft in die folgenden Segmente:
ANGEBOT
- HARDWARE
- SOFTWARE
- DIENSTLEISTUNGEN
Auf der Grundlage des Angebots ist der Markt in Hardware, Software und Dienstleistungen segmentiert.
TECHNOLOGIE
- MASCHINELLES LERNEN (ML)
- COMPUTER VISION
- NATÜRLICHE SPRACHVERARBEITUNG (NLP)
- ROBOTIK & AUTOMATISIERUNG
- ANDERE
Auf der Grundlage der Technologie ist der Markt in maschinelles Lernen (ML), Computer Vision, Verarbeitung natürlicher Sprache (NLP), Robotik und Automatisierung und andere unterteilt.
ANWENDUNG
- PRÄZISIONSLANDWIRTSCHAFT
- Viehbestandsüberwachung
- WETTERVORHERSAGE
- BODENMANAGEMENT
- Überwachung der Pflanzengesundheit
- Supply Chain-Optimierung
- ANDERE
Auf der Grundlage der Anwendung ist der Markt in Präzisionslandwirtschaft, Viehbestandsüberwachung, Wettervorhersage, Bodenmanagement, Überwachung der Pflanzengesundheit, Lieferkettenoptimierung und andere segmentiert.
Bereitstellungsmodus
- WOLKE
- VOR ORT
Auf der Grundlage des Bereitstellungsmodus ist der Markt in Cloud und On-Premise segmentiert.
Endverbraucher
- Bauernhöfe
- AGROTECHNISCHE UNTERNEHMEN
- AGROCHEMIEUNTERNEHMEN
- FORSCHUNGSINSTITUTE
- ANDERE
Auf der Grundlage des Endverbrauchers wird der Markt in landwirtschaftliche Betriebe, Agrartechnologieunternehmen, Agrochemieunternehmen, Forschungsinstitute und andere segmentiert.
Globaler Markt für künstliche Intelligenz in der Landwirtschaft
Der globale Markt für künstliche Intelligenz in der Landwirtschaft ist in fünf bemerkenswerte Segmente unterteilt, die auf Angebot, Technologie, Anwendung, Bereitstellungsmodus und Endbenutzer basieren. Die Länder, die vom globalen Markt für das Internet der Dinge (IOT) in der Landwirtschaft abgedeckt werden, sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, übriges Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, übriger asiatisch-pazifischer Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, übriger Naher Osten und Afrika, Brasilien, Argentinien und übriges Südamerika.
In Nordamerika dominieren die USA als Land mit der höchsten Anzahl an Hardwarekomponentenanbietern. Auch in Europa dominiert Großbritannien aufgrund seines technologischen Fortschritts im ganzen Land. Im asiatisch-pazifischen Raum dominiert China, da das Land die größten Hersteller von Hardwarekomponenten in der Region hat.
Der Länderabschnitt des Berichts enthält auch einzelne marktbeeinflussende Faktoren und Änderungen der Marktregulierung, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie die Analyse der nachgelagerten und vorgelagerten Wertschöpfungskette, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung einer Prognoseanalyse der Länderdaten werden auch die Präsenz und Verfügbarkeit von APAC-Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken, die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und globale Analyse der Marktanteile künstlicher Intelligenz in der Landwirtschaft
Die globale Wettbewerbslandschaft auf dem Markt für künstliche Intelligenz in der Landwirtschaft liefert Einzelheiten zum Wettbewerber. Die enthaltenen Einzelheiten umfassen Unternehmensübersicht, Unternehmensfinanzen, erzielten Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, Präsenz in APAC und SEA, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den globalen Markt für künstliche Intelligenz in der Landwirtschaft. Einige der wichtigsten Akteure auf dem globalen Markt für künstliche Intelligenz in der Landwirtschaft sind unter anderem: Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation und IBM.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.