Europa Deep Learning Neural Networks (DNNs) Marktgröße, Marktanteil und Trendanalysebericht – Branchenüberblick und Prognose bis 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Europa Deep Learning Neural Networks (DNNs) Marktgröße, Marktanteil und Trendanalysebericht – Branchenüberblick und Prognose bis 2032

  • ICT
  • Upcoming Reports
  • Oct 2021
  • Europe
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60

Europe Deep Learning Neural Networks Dnns Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 11.50 Billion USD 37.96 Billion 2024 2032
Diagramm Prognosezeitraum
2025 –2032
Diagramm Marktgröße (Basisjahr)
USD 11.50 Billion
Diagramm Marktgröße (Prognosejahr)
USD 37.96 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • ALYUDA analysisLLC
  • ALPHABET INC.
  • IBM
  • Neural Technologies restricted
  • NEURODIMENSIONInc.

Europäische Marktsegmentierung für Deep Learning Neural Networks (DNNs) nach Produkttyp (Softwareplattformen, Hardwarebeschleuniger, Dienste), Technologie (CNNs, RNNs, GANs, Transformatoren, andere), Anwendung (Gesundheitsdiagnostik, autonome Fahrzeuge, Finanzdienstleistungen, Einzelhandel, Fertigung, andere), Bereitstellung (Cloud-basiert, vor Ort), Endbenutzer (Unternehmen, Gesundheitsdienstleister, Automobilhersteller, Finanzinstitute, Regierungsbehörden, andere) – Branchentrends und Prognose bis 2032

Markt für Deep Learning Neuronale Netzwerke (DNNs) Z

Marktgröße für Deep Learning Neuronale Netze (DNNs)

  • Der europäische Markt für Deep Learning Neural Networks (DNNs) wird im Jahr 2024 auf 11,50 Milliarden US-Dollar geschätzt  und soll  bis 2032 37,96 Milliarden US-Dollar erreichen , bei einer CAGR von 16,1 % im Prognosezeitraum.
  • Dieses starke Wachstum ist vor allem auf die breite Verbreitung von Technologien der künstlichen Intelligenz (KI), steigende Investitionen in die Infrastruktur für maschinelles Lernen und die steigende Nachfrage nach fortschrittlicher Datenanalyse in Branchen wie dem Gesundheitswesen, der Automobilindustrie, dem Finanzwesen und dem Einzelhandel zurückzuführen. Die zunehmende Verbreitung von Big Data und die Verbesserung der Rechenleistung beschleunigen das Marktwachstum zusätzlich.
  • Die führende Rolle der Region bei technologischen Innovationen, unterstützt durch erhebliche Investitionen in Forschung und Entwicklung (F&E), staatliche Initiativen zur Förderung der KI-Nutzung und eine starke Präsenz führender Technologieunternehmen, trägt maßgeblich zum Aufwärtstrend des Marktes bei. Darüber hinaus treibt die zunehmende Integration von DNNs in autonome Systeme, intelligente Fertigung und personalisierte Verbraucherdienste die Nachfrage nach Deep-Learning-Lösungen in ganz Europa an.

Marktanalyse für Deep Learning Neural Networks (DNNs)

  • Deep Learning Neural Networks (DNNs) sind fortschrittliche KI-Algorithmen, die menschliche Gehirnprozesse nachahmen und es Maschinen ermöglichen, riesige Datensätze zu verarbeiten, Muster zu erkennen und datenbasierte Entscheidungen zu treffen. Diese Systeme, darunter Softwareplattformen, Hardwarebeschleuniger wie GPUs und TPUs sowie professionelle Dienstleistungen, sind entscheidend für Anwendungen in der Gesundheitsdiagnostik, autonomen Fahrzeugen, Finanzmodellierung, Personalisierung im Einzelhandel und der Fertigungsautomatisierung.
  • Der Markt profitiert maßgeblich von der Dominanz Europas im Bereich der KI-Innovation. Die Region wird 2023 über 40 % der weltweiten Forschungs- und Entwicklungsausgaben für KI ausmachen, angeführt von den USA. Die rasante Verbreitung autonomer Fahrzeuge – bis 2027 werden voraussichtlich über 1,2 Millionen selbstfahrende Autos auf deutschen Straßen unterwegs sein – treibt die Nachfrage nach DNNs in der Echtzeit-Bild- und Sensordatenverarbeitung.
  • Technologische Fortschritte wie transformerbasierte Modelle und generative KI erweitern die DNN-Fähigkeiten und ermöglichen Anwendungen in der Verarbeitung natürlicher Sprache (NLP), der Computervision und der prädiktiven Analytik. KI-Initiativen der deutschen Regierung, wie die Nationale KI-Forschungsressource (NAIRR), fördern Innovationen und unterstützen das Marktwachstum.
  • Deutschland dominiert den Markt mit einem beeindruckenden Umsatzanteil von 42,1 % im Jahr 2024 im Wert von 10,29 Milliarden US-Dollar. Grund hierfür sind das robuste Technologie-Ökosystem, die Präsenz wichtiger Akteure wie NVIDIA und Google sowie erhebliche Investitionen in die KI-Infrastruktur.
  • In Frankreich wird voraussichtlich die höchste Wachstumsrate verzeichnet, mit einer prognostizierten durchschnittlichen jährlichen Wachstumsrate (CAGR) von 16,8 % zwischen 2025 und 2032. Grund hierfür sind die staatliche Förderung der KI-Forschung und die zunehmende Einführung im Gesundheits- und Automobilsektor.
  • Unter den Produkttypen hatte das Segment Softwareplattformen im Jahr 2024 mit 48,7 % den größten Marktanteil, was auf die weit verbreitete Verwendung von Deep-Learning-Frameworks wie TensorFlow und PyTorch in Unternehmens- und Forschungsanwendungen zurückzuführen ist.

Berichtsumfang und Marktsegmentierung für Deep Learning Neural Networks (DNNs) in Europa    

Eigenschaften

Europa: Wichtige Markteinblicke zu Deep Learning Neural Networks (DNNs)

Abgedeckte Segmente

  • Nach Produkttyp : Softwareplattformen, Hardwarebeschleuniger, Dienste
  • Nach Technologie : Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), Transformers, Sonstiges
  • Nach Anwendung : Gesundheitsdiagnostik, autonome Fahrzeuge, Finanzdienstleistungen, Einzelhandel und E-Commerce, Fertigungsautomatisierung, Sonstiges
  • Nach Bereitstellung : Cloudbasiert, vor Ort
  • Nach Endbenutzer : Unternehmen, Gesundheitsdienstleister, Automobilhersteller, Finanzinstitute, Regierungsbehörden, Sonstige

Abgedeckte Länder

Europa

  • Deutschland
  • Frankreich
  • Vereinigtes Königreich
  • Niederlande
  • Schweiz
  • Belgien
  • Russland
  • Italien
  • Spanien
  • Truthahn

Wichtige Marktteilnehmer

  • NVIDIA Corporation (Vereinigte Staaten)
  • Google LLC (Vereinigte Staaten)
  • Microsoft Corporation (Vereinigte Staaten)
  • Amazon Web Services, Inc. (Vereinigte Staaten)
  • Intel Corporation (Vereinigte Staaten)
  • IBM Corporation (Vereinigte Staaten)
  • Advanced Micro Devices, Inc. (AMD) (Vereinigte Staaten)
  • Meta AI (Vereinigte Staaten)
  • Qualcomm Incorporated (Vereinigte Staaten)
  • Oracle Corporation (Vereinigte Staaten)
  • SAS Institute Inc. (Vereinigte Staaten)
  • Palantir Technologies Inc. (Vereinigte Staaten)
  • H2O.ai (Vereinigte Staaten)
  • DataRobot, Inc. (Vereinigte Staaten)
  • Cerebras Systems Inc. (Vereinigte Staaten)
  • xAI (Vereinigte Staaten)

Marktchancen

  • Schnelle Ausbreitung KI-gestützter Anwendungen in autonomen Fahrzeugen, intelligenten Gesundheitssystemen und personalisierten Einzelhandelserlebnissen in ganz Europa.
  • Wachsende Nachfrage nach Cloud-basierten DNN-Lösungen, die einen skalierbaren und kostengünstigen KI-Einsatz für Großunternehmen und kleine Betriebe ermöglichen.

Wertschöpfungsdaten-Infosets

Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch ausführliche Expertenanalysen, Preisanalysen, Markenanteilsanalysen, Verbraucherumfragen, demografische Analysen, Lieferkettenanalysen, Wertschöpfungskettenanalysen, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, PESTLE-Analysen, Porter-Analysen und regulatorische Rahmenbedingungen.

Markttrends für Deep Learning Neural Networks (DNNs)

Generative KI, Transformer-Modelle, Edge Computing und nachhaltige KI-Lösungen

  • Die Einführung generativer KI und transformatorbasierter Modelle ist ein herausragender Trend. Über 30 % der neuen DNN-Bereitstellungen im Jahr 2024 werden diese Technologien für Anwendungen in den Bereichen NLP, Bildgenerierung und kreative Inhaltsproduktion nutzen und so das Benutzererlebnis im Einzelhandel und in den Medien verbessern.
  • Der Aufstieg des Edge Computing – 25 % der neuen DNN-Lösungen im Jahr 2024 werden für die Verarbeitung auf dem Gerät konzipiert sein – gewinnt bei autonomen Fahrzeugen und IoT-Anwendungen an Bedeutung, reduziert die Latenz und verbessert die Entscheidungsfindung in Echtzeit.
  • Zunehmender Fokus auf nachhaltige KI-Lösungen: 15 % der neuen Hardwarebeschleuniger im Jahr 2024 werden auf Energieeffizienz zertifiziert sein, was im Einklang mit europäischen Initiativen für grüne Technologien steht und die Umweltauswirkungen von KI-Computing reduziert.
  • Die Nutzung cloudbasierter DNN-Plattformen nimmt rasant zu. Im Jahr 2024 wird mit einem Anstieg der Akzeptanzraten um 20 % gerechnet, was auf skalierbare und flexible Lösungen von Anbietern wie AWS, Microsoft Azure und Google Cloud zurückzuführen ist.
  • Die Integration von DNNs in IoT-Ökosysteme, insbesondere in der intelligenten Fertigung und im Gesundheitswesen, nimmt zu. 18 % der neuen Lösungen im Jahr 2024 werden für die Echtzeit-Datenanalyse und Automatisierung in diesen Sektoren konzipiert sein.
  • Die wachsende Nachfrage der Verbraucher nach personalisierten KI-gestützten Diensten, wie etwa Empfehlungssystemen im Einzelhandel und prädiktiver Diagnostik im Gesundheitswesen, treibt Innovationen bei DNN-Anwendungen in ganz Europa voran.

Marktdynamik für Deep Learning Neural Networks (DNNs)

Treiber

„Einführung von KI, Verbreitung von Big Data, autonome Systeme, staatliche Unterstützung und technologischer Fortschritt“

  • Die branchenübergreifende Verbreitung von KI-Technologien – der europäische KI-Markt soll bis 2027 voraussichtlich ein Volumen von 200 Milliarden US-Dollar erreichen – führt zu einer erheblichen Nachfrage nach DNNs in Anwendungen wie der medizinischen Diagnostik, dem autonomen Fahren und der Finanzmodellierung.
  • Die zunehmende Verbreitung von Big Data – europäische Unternehmen werden im Jahr 2023 täglich über 2,5 Exabyte an Daten generieren – treibt den Bedarf an fortschrittlichen DNNs zur Verarbeitung und Analyse komplexer Datensätze voran, um umsetzbare Erkenntnisse zu gewinnen.
  • Die rasante Entwicklung autonomer Fahrzeuge – bis 2027 werden voraussichtlich über 1,2 Millionen selbstfahrende Autos auf Deutschlands Straßen unterwegs sein – erhöht die Nachfrage nach DNNs in den Bereichen Echtzeit-Bildverarbeitung, Sensorfusion und Entscheidungsalgorithmen.
  • Regierungsinitiativen wie die französische nationale KI-Initiative und die pankanadische KI-Strategie stellen erhebliche finanzielle und regulatorische Unterstützung für die KI-Forschung bereit und fördern so Innovation und die Einführung von DNNs in allen Branchen.
  • Fortschritte bei Hardwarebeschleunigern wie NVIDIAs A100-GPUs und Googles TPUs verbessern die DNN-Leistung und ermöglichen schnelleres Training und schnellere Inferenz für komplexe Modelle in Rechenzentren und Edge-Geräten.
  • Die wachsende Nachfrage nach personalisierten Kundenerlebnissen (65 % der deutschen Einzelhändler werden im Jahr 2023 KI-gesteuerte Empfehlungssysteme einführen) treibt die Integration von DNNs in Einzelhandels-, E-Commerce- und Kundendienstanwendungen voran.

Einschränkung/Herausforderung

Hohe Entwicklungskosten, Datenschutzbedenken, Fachkräftemangel, Energieverbrauch und regulatorische Komplexität

  • Die hohen Kosten für die Entwicklung und Bereitstellung von DNNs, insbesondere für benutzerdefinierte Hardwarebeschleuniger und groß angelegte KI-Modelle, stellen eine Herausforderung für die Akzeptanz bei kleinen und mittleren Unternehmen dar und schränken die Marktskalierbarkeit in kostensensiblen Segmenten ein.
  • Datenschutzbedenken, die durch Vorschriften wie den California Consumer Privacy Act (CCPA) und den französischen Personal Information Protection and Electronic Documents Act (PIPEDA) hervorgerufen werden, erhöhen die Compliance-Kosten und die Komplexität für DNN-Anbieter, die mit sensiblen Daten umgehen.
  • Der Fachkräftemangel im Bereich KI und Deep Learning – in Europa wird bis 2026 ein Defizit von 250.000 KI-Fachkräften prognostiziert – stellt eine Herausforderung für die Implementierung, Wartung und Innovation von DNN-Technologien dar.
  • Der hohe Energieverbrauch von DNN-Trainings- und Inferenzprozessen – bei groß angelegten Modellen beträgt der jährliche Verbrauch bis zu 500 MWh – gibt Anlass zu Bedenken hinsichtlich der Nachhaltigkeit und der Betriebskosten, insbesondere in Rechenzentren.
  • Die schnelle technologische Veralterung, die durch die kontinuierliche Weiterentwicklung von KI-Algorithmen und -Hardware vorangetrieben wird, zwingt Unternehmen dazu, massiv in Forschung und Entwicklung zu investieren. Dies verringert die Rentabilität kleinerer Akteure und begrenzt langfristige Innovationen.
  • Regulatorische Komplexitäten, wie etwa unterschiedliche KI-Governance-Rahmenwerke in Deutschland und Frankreich, stellen eine Herausforderung für die standardisierte Bereitstellung und Einhaltung von DNN dar und erhöhen den Betriebsaufwand für die Anbieter.

Marktumfang für Deep Learning Neural Networks (DNNs) in Europa

Der europäische Markt für Deep Learning Neural Networks (DNNs) ist nach Produkttyp, Technologie, Anwendung, Bereitstellung und Endbenutzer segmentiert, um ein umfassendes Verständnis der Marktdynamik und Wachstumschancen zu bieten.

  • Nach Produkttyp

Der Markt ist nach Produkttyp in Softwareplattformen, Hardwarebeschleuniger und Dienstleistungen segmentiert. Das Segment Softwareplattformen dominierte mit einem Umsatzanteil von 48,7 % im Jahr 2024 im Wert von 6,09 Milliarden US-Dollar, angetrieben durch die weit verbreitete Nutzung von Frameworks wie TensorFlow, PyTorch und Keras in Unternehmens- und Forschungsanwendungen. Das Dienstleistungssegment wird voraussichtlich von 2025 bis 2032 mit einer durchschnittlichen jährlichen Wachstumsrate von 16,5 % wachsen, angetrieben durch die Nachfrage nach KI-Beratungs- und Implementierungsdienstleistungen.

Nach Technologie

Der Markt ist technologisch in Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), Transformers und weitere segmentiert. Das CNN-Segment hielt 2024 mit 40,2 % den größten Anteil, angetrieben durch seinen Einsatz in der Bilderkennung und bei autonomen Fahrzeugen. Das Transformers-Segment wird voraussichtlich von 2025 bis 2032 mit 17,1 % die höchste jährliche Wachstumsrate (CAGR) verzeichnen, angetrieben durch Fortschritte in NLP und generativer KI.

Nach Anwendung

Der Markt ist nach Anwendungsbereichen segmentiert: Gesundheitsdiagnostik, autonome Fahrzeuge, Finanzdienstleistungen, Einzelhandel und E-Commerce, Fertigungsautomatisierung und weitere. Das Segment Gesundheitsdiagnostik erzielte 2024 mit 35,6 % den größten Umsatzanteil, angetrieben von KI-gestützter medizinischer Bildgebung und prädiktiver Diagnostik. Das Segment autonome Fahrzeuge wird voraussichtlich von 2025 bis 2032 mit einer durchschnittlichen jährlichen Wachstumsrate von 18,3 % wachsen, angetrieben durch die Entwicklung selbstfahrender Autos.

Nach Bereitstellung

Basierend auf der Bereitstellung ist der Markt in Cloud-basierte und On-Premise-Lösungen segmentiert. Das Cloud-basierte Segment hielt 2024 einen signifikanten Anteil von 60,8 %, angetrieben durch skalierbare Lösungen von AWS, Azure und Google Cloud. Es wird erwartet, dass das Cloud-basierte Segment von 2025 bis 2032 mit einer durchschnittlichen jährlichen Wachstumsrate von 16,9 % am schnellsten wächst, angetrieben durch die Nachfrage nach flexibler und kostengünstiger KI-Bereitstellung.

Nach Endbenutzer


Auf Basis der Endnutzer segmentiert sich der Markt in Unternehmen, Gesundheitsdienstleister, Automobilhersteller, Finanzinstitute, Behörden und weitere. Das Unternehmenssegment dominierte 2024 mit einem Umsatzanteil von 42,1 %, angetrieben durch den Einsatz von KI in der Geschäftsanalyse. Das Segment der Gesundheitsdienstleister wird voraussichtlich von 2025 bis 2032 mit einer durchschnittlichen jährlichen Wachstumsrate von 17,4 % wachsen, angetrieben durch KI-gestützte Diagnostik und personalisierte Medizin.

Regionale Marktanalyse für Deep Learning Neural Networks (DNNs)

Markteinblick in Deep Learning Neural Networks (DNNs) in Deutschland

Deutschland führte den Markt mit einem beeindruckenden Umsatzanteil von 42,1 % im Jahr 2024 an, was einem Wert von 10,29 Milliarden US-Dollar entspricht. Dies ist auf das robuste Technologie-Ökosystem, die Präsenz wichtiger Akteure wie NVIDIA, Google und Microsoft sowie erhebliche Investitionen in die KI-Infrastruktur zurückzuführen. Die führende Rolle Deutschlands bei autonomen Fahrzeugen, KI im Gesundheitswesen und Finanzdienstleistungen, gepaart mit staatlicher Unterstützung durch die Nationale KI-Initiative, festigt seine Dominanz.

Markteinblick in Deep Learning Neural Networks (DNNs) in Frankreich

Frankreich dürfte von 2025 bis 2032 mit einer durchschnittlichen jährlichen Wachstumsrate von 16,8 % die höchste Wachstumsrate aufweisen. Dies wird durch Regierungsinitiativen wie die pankanadische KI-Strategie vorangetrieben, die die KI-Forschung und -Einführung im Gesundheitswesen, der Automobilindustrie und der Fertigungsindustrie fördert. Frankreich hatte 2024 einen Marktanteil von 12,1 %, da DNNs in Smart Cities und der medizinischen Diagnostik zunehmend eingesetzt werden.

Markteinblick in Deep Learning Neural Networks (DNNs) in Großbritannien

Großbritannien hatte 2024 einen Marktanteil von 5,6 %, angetrieben durch die wachsende Automobil- und Fertigungsindustrie, die zunehmend KI für Automatisierung und Qualitätskontrolle einsetzt. Die staatlichen Bemühungen zur Förderung von Industrie 4.0 und Partnerschaften mit ansässigen Technologieunternehmen unterstützen das Marktwachstum in Großbritannien.

Marktanteil von Deep Learning Neural Networks (DNNs)

  • Die Branche der Deep Learning Neural Networks (DNNs) wird hauptsächlich von etablierten Unternehmen angeführt, darunter:
  • NVIDIA Corporation (Vereinigte Staaten)
  • Google LLC (Vereinigte Staaten)
  • Microsoft Corporation (Vereinigte Staaten)
  • Amazon Web Services, Inc. (Vereinigte Staaten)
  • Intel Corporation (Vereinigte Staaten)
  • IBM Corporation (Vereinigte Staaten)
  • Advanced Micro Devices, Inc. (AMD) (Vereinigte Staaten)
  • Meta AI (Vereinigte Staaten)
  • Qualcomm Incorporated (Vereinigte Staaten)
  • Oracle Corporation (Vereinigte Staaten)
  • SAS Institute Inc. (Vereinigte Staaten)
  • Palantir Technologies Inc. (Vereinigte Staaten)
  • H2O.ai (Vereinigte Staaten)
  • DataRobot, Inc. (Vereinigte Staaten)
  • Cerebras Systems Inc. (Vereinigte Staaten)
  • xAI (Vereinigte Staaten)

Neueste Entwicklungen auf dem europäischen Markt für Deep Learning Neural Networks (DNNs)

  • Im Oktober 2023 stellte NVIDIA die H200 Tensor Core GPU vor, seinen Prozessor der nächsten Generation, der das Training und die Inferenz tiefer neuronaler Netzwerke (DNN) beschleunigen soll. Die H200 bietet im Vergleich zu ihren Vorgängern eine bis zu 20 % bessere Leistung für generative KI-Workloads. Sie ist für groß angelegte KI-Modelle wie Transformatoren und Diffusionsmodelle optimiert, die für Anwendungen in NLP und Computer Vision entscheidend sind. Große Cloud-Anbieter wie AWS und Azure setzen die H200 bereits für ihre KI-Plattformen ein und erweitern so die Möglichkeiten sowohl in Unternehmens- als auch in Forschungsumgebungen.
  • Im Januar 2024 brachte Google Cloud Vertex AI Vision auf den Markt, eine neue Erweiterung seiner Vertex AI-Plattform, die auf Echtzeit-Bild- und Videoanalyse mittels Deep Learning abzielt. Diese Cloud-basierte Lösung unterstützt Anwendungsfälle im Einzelhandel (z. B. Smart Checkout, Bestandsverfolgung) und in der Fertigung (z. B. Fehlererkennung). Sie bietet eine um 15 % höhere Verarbeitungsgeschwindigkeit dank optimierter Modellbereitstellung und Inferenzleistung. Vertex AI Vision lässt sich problemlos in bestehende Google Cloud-Dienste integrieren und hilft Entwicklern, Computer-Vision-Anwendungen schneller und effizienter zu skalieren.
  • Im März 2024 erweiterte Microsoft seine Zusammenarbeit mit OpenAI durch die Einbettung fortschrittlicher transformerbasierter Modelle in die Azure-KI-Plattform. Diese Integration verbessert die Möglichkeiten der natürlichen Sprachverarbeitung (NLP) für Unternehmensanwender erheblich. Zu den Anwendungen gehören automatisierter Kundenservice, Sprachübersetzung, Inhaltsgenerierung und Dokumentzusammenfassung. Über 100 Unternehmen in Deutschland nutzen diese Funktionen bereits und nutzen die Azure-Infrastruktur, um intelligente Automatisierung im großen Maßstab zu implementieren.
  • Im April 2024 stellte Elon Musks xAI eine verbesserte Version seiner Grok-Plattform vor. Diese integrierte fortschrittlichere DNNs für verbesserte analytische Schlussfolgerungen und Dateninterpretation. Das aktualisierte Grok-System ist für Unternehmensanwendungen in Bereichen wie prädiktive Modellierung, Business Intelligence und strategische Prognosen konzipiert. Mit dem Fokus auf Echtzeit-Einblicke und bessere Leistung dient Grok nun als leistungsstarkes Tool für datengesteuerte Entscheidungsfindung und den KI-Einsatz auf Unternehmensebene.
  • Im Juni 2024 brachte Intel den KI-Beschleuniger Gaudi 3 auf den Markt, der für energieeffizientes DNN-Training mit hohem Durchsatz entwickelt wurde. Im Vergleich zum Vorgängermodell reduziert Gaudi 3 den Stromverbrauch um 25 % und verbessert gleichzeitig Speicherbandbreite und Rechenleistung. Der Chip gilt als kostengünstige Lösung für KI-Training und -Inferenz in großen Rechenzentrumsumgebungen. Die Einführung bei großen Dateninfrastrukturanbietern in ganz Europa hat bereits begonnen.

SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Europäische Marktsegmentierung für Deep Learning Neural Networks (DNNs) nach Produkttyp (Softwareplattformen, Hardwarebeschleuniger, Dienste), Technologie (CNNs, RNNs, GANs, Transformatoren, andere), Anwendung (Gesundheitsdiagnostik, autonome Fahrzeuge, Finanzdienstleistungen, Einzelhandel, Fertigung, andere), Bereitstellung (Cloud-basiert, vor Ort), Endbenutzer (Unternehmen, Gesundheitsdienstleister, Automobilhersteller, Finanzinstitute, Regierungsbehörden, andere) – Branchentrends und Prognose bis 2032 segmentiert.
Die Größe des Europa Deep Learning Neural Networks (DNNs) Markt wurde im Jahr 2024 auf 11.50 USD Billion USD geschätzt.
Der Europa Deep Learning Neural Networks (DNNs) Markt wird voraussichtlich mit einer CAGR von 16.1% im Prognosezeitraum 2025 bis 2032 wachsen.
Die Hauptakteure auf dem Markt sind ALYUDA analysisLLC, ALPHABET INC., IBM, Neural Technologies restricted, NEURODIMENSIONInc., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm TechnologiesInc., Intel Corporation, Amazon internet ServicesInc., Microsoft, GMDH LLC., Sensory INC., Ward Systems clusterInc., Xilinx Inc., Starmind .
Testimonial