Spain Machine Learning as a Service Market, By Service (Managed Service, Professional, Professional Service), Business Function (Human Resources, Sales and Marketing, Finance, and Operation), Deployment Model (Cloud, On Premise), Organization Size (Large Organization, Small and Medium Organization), Application (Drug Discovery, Fraud Detection and Risk Management, Natural Language Processing, Marketing and Advertising, Security and Surveillance, Image Recognition, Predictive Analytics, Data Mining, Augmented and Virtual Reality), End User (Banking, Financial Services, and Insurance, IT and Telecom, Research and Academic, Government and Public Sector, Retail and Ecommerce, Manufacturing, Healthcare and Pharmaceuticals, Travel and Logistics, Energy and Utility, Media and Entertainment) – Industry Trends and Forecast to 2029
Market Analysis and Size
Companies within the machine learning as a service market square measure concentrating on essential industries like health-tech, BFSI, and telecommunications to determine stable revenue streams post the coronavirus amount. However, technological errors and lack of expert professionals with machine learning experience appear to be one in every of the main restraining factors within the adoption of machine learning by organizations. This can be making hurdles within the implementation of machine learning as a service platforms. Additionally, the shortage of knowledge security because of shortage of apparatus negatively impacts the expansion of the market. Hence, participants within the machine learning as a service market ought to cooperate with government and restrictive organizations to standardize the machine learning as a service business.
Data Bridge Market Research analyses that the machine learning as a service market value, which was USD 5.45 billion in 2021, is expected to reach the value of USD 79.34 billion by 2029, at a CAGR of 39.76 % during the forecast period 2022-2029.
Market Definition
Machine learning is a technology that provides computers the capability to learn and change fundamental functionality when exposed to different data sets. machine learning has become the most important tool for business. Tech-giant such as Amazon and Google are making huge spending in order to increase and solidify their customer base.
Report Scope and Market Segmentation
Report Metric |
Details |
Forecast Period |
2022 to 2029 |
Base Year |
2021 |
Historic Years |
2020 (Customizable to 2019 - 2014) |
Quantitative Units |
Revenue in USD Billion, Volumes in Units, Pricing in USD |
Segments Covered |
Service (Managed Service, Professional, Professional Service), Business Function (Human Resources, Sales and Marketing, Finance, and Operation), Deployment Model (Cloud, On Premise), Organization Size (Large Organization, Small and Medium Organization), Application (Drug Discovery, Fraud Detection and Risk Management, Natural Language Processing, Marketing and Advertising, Security and Surveillance, Image Recognition, Predictive Analytics, Data Mining, Augmented and Virtual Reality), End User (Banking, Financial Services, and Insurance, IT and Telecom, Research and Academic, Government and Public Sector, Retail and Ecommerce, Manufacturing, Healthcare and Pharmaceuticals, Travel and Logistics, Energy and Utility, Media and Entertainment) |
Market Players Covered |
Google (US), Microsoft (US), IBM (US), SAP (Germany), Amazon Web Services, Inc. (US) |
Market Opportunities |
|
Spain Machine Learning as a Service Market Dynamics
This section deals with understanding the market drivers, advantages, opportunities, restraints and challenges. All of this is discussed in detail as below:
Drivers:
- Advancements in technologies
Rapid advancements and innovations area unit happening in sanctioning technologies. numerous resolution suppliers do a great deal of labor in these areas. As an example, Affectiva recently launched its feeling analytics technology that has the biggest knowledge repository of over two million face videos, sanctioning its purchasers to attain high accuracy with unmatched insights. aside from that, alternative players like little players like Cognitec System, Emotient, Gesturetek, Saffron, and Palantir are creating vital advancements within the field of gesture recognition, face recognition, psychological feature computing, and somatic cell analytics. These developments area unit expected to fuel the expansion of the market in returning years.
- Data Storage and Archiving
In deep learning algorithms, information storage and archiving package plays an important role in predicting the solutions for terribly advanced issues. Since a deep learning algorithmic program deals with a synthetic neural network composed of the many layers, it desires an outsized quantity of information sets to supply the result. Deep learning algorithmic program uses information storage and archiving package to focus on the advanced functions within the artificial neural network.
- Modeller and Processing
Over the last decade, machine learning technologies have evolved into “algorithms” developed from numerous fields together with statistics, arithmetic, neurobiology, and computing, creating them commercially viable and computationally sturdy. several applications offered these days like speech recognition, fraud detection, and network improvement use a spread of machine learning techniques supported classification, regression, and estimation to method structured knowledge sets.
- Cloud and Web-Based Application Programming Interface (APIS)
In machine learning rule, demand of information is a vital input parameter. A number of the business verticals like banking and monetary services would like an outsized quantity of information instantly to predict the market behavior. Machine learning algorithms get terribly less time to predict solutions when gathering information from information storage and archiving software package. To beat this quality, machine learning algorithms produce an interface between cloud and therefore the application platform.
Opportunities:
- Increasing investments in the healthcare industry
In the field of medicine, huge information is deployed for computing difficult statistics in huge amounts thus on deliver trends and patterns that square measure crucial for applications within the attention business. Huge information aids physicians in anticipating issues before they occur. The Elsevier Health Analytics cluster has revolutionized patient care in FRG by deploying huge information. The corporate is closely coordinative with health economists, physicians, statisticians, IT specialists and analysts for growing the evidence-driven information on acceptable treatments. This is often managed by huge information in attention and befittingly employed by medical professionals with the assistance of AI. The preparation of huge information in attention has so increased the expansion of Germany’s marketplace for machine learning.
Restrictions/ challenges:
Lack of sure-handed labor to put in machine learning as a service market could be a key issue which will hamper growth of the world machine learning as a service market to an exact extent. In addition, businesses would like skilled services to customise specific functions to implement on their MLaaS platforms. Stringent compliance problems is another issue expected to restrain the target market.
This machine learning as a service market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the machine learning as a service market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
COVID-19 Impact on Machine Learning as a Service Market
The COVID-19 pandemic has expedited the interest for machine learning because the world practices social distancing technologies. Incorporation of machine learning as a service Market ought to be doable through each software system and services relying upon the amount and nature of integration. Utilization of heat cameras and cluster identification frameworks has become typical across air terminals, train stations, and totally different spots of public visit. This has brought machine learning as a service markets beneath the spotlight of thought, which successively is predicted to enhance the target market. In addition, the employment of AI for recognizing the presence of people across confined zones in clinics associated COVID care focuses have a positive impact on the world machine learning as a service market. The calculations used for AI and investigation have improved by a good pursue late that creates a dynamic chance for the players/suppliers operational within the machine learning as a service market.
Spain Machine Learning as a Service Market Scope
The machine learning as a service market is segmented on the basis of service ,business function deployment model , organization size , application , end user .The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Service
- Managed Service
- Professional
- Professional Service
Business Function
- Human Resources
- Sales and Marketing
- Finance, and Operation
Deployment Model
- Cloud
- On Premise
Organization Size
- Large Organization
- Small and Medium Organization
Application
- Drug Discovery
- Fraud Detection and Risk Management
- Natural Language Processing
- Marketing and Advertising
- Security and Surveillance
- Image Recognition
- Predictive Analytics
- Data Mining
- Augmented and Virtual Reality
End User
- Banking and Financial Services
- Insurance
- IT and Telecom
- Research and Academic
- Government and Public Sector
- Retail and Ecommerce
- Manufacturing
- Healthcare and Pharmaceuticals
- Travel and Logistics
- Energy and Utility
- Media and Entertainment
Competitive Landscape and Machine Learning as a Service Market Share Analysis
The machine learning as a Service market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to machine learning as a Service market.
Some of the major players operating in the machine learning as a service market are:
- Google (US),
- Microsoft (US),
- IBM (US),
- SAP (Germany),
- Amazon Web Services, Inc. (US)
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Table of Content
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
Research Methodology
Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.
The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.
Customization Available
Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.