ICT

Request for TOC Request for Sample
BUY NOW

Global MLOPs Market – Industry Trends and Forecast to 2031

ICT | Upcoming Report | Apr 2024 | Global | 350 Pages | No of Tables: 220 | No of Figures: 60

Report Description

Global MLOPs Market, By Component (Platform, Service), Deployment Mode (On Premise, Cloud, Hybrid), Organization Size (Large Enterprises, Small and Medium-sized Enterprises (SMEs)), Industry Verticals (Financial Services (BFSI), Manufacturing, Information Technology (IT) and Telecom, Retail and E-commerce, Healthcare, Others) - Industry Trends and Forecast to 2031.

MLOPs Market Analysis and Size

Machine learning operations (MLOps) refers to the set of practices and tools used to streamline and automate the deployment, monitoring, and management of machine learning models in production environments. MLOps aims to bridge the gap between the development and deployment of machine learning models by ensuring consistency, reliability, and scalability throughout the entire machine learning lifecycle.

Data Bridge Market Research analyses that the global MLOPs market which was USD 7.62 billion in 2023, is expected to reach USD 11.69 billion by 2031, and is expected to undergo a CAGR of 5.5% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.

Report Scope and Market Segmentation

Report Metric

Details

Forecast Period

2024 to 2031

Base Year

2023

Historic Years

2022 (Customized 2016 to 2021)

Quantitative Units

Revenue in USD Billion, Volumes in Units, Pricing in USD

Segments Covered

Component (Platform, Service), Deployment Mode (On Premise, Cloud, Hybrid), Organization Size (Large Enterprises, Small and Medium-sized Enterprises (SMEs)), Industry Verticals (Financial Services (BFSI), Manufacturing, Information Technology (IT) and Telecom, Retail and E-commerce, Healthcare, Others)

Countries Covered

U.S., Canada, Mexico, Brazil, Argentina, Rest of South America, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of the Middle East and Africa

Market Players Covered

Databricks (U.S.), Domino Data Lab (U.S.), Kubeflow (by Google) (U.S.), Amazon SageMaker (U.S.), Paperspace Gradient (U.S.), Fiddler AI (U.S.), MLflow (by Databricks) (U.S.), Valohai (Finland), Pachyderm (U.S.), ZenML (Germany)

Market Opportunities

  • Rising Demand for AI and Machine Learning
  • Growing Focus on Democratization of MLOps

Market Definition

The MLOps encompasses a range of solutions and services that streamline the entire machine learning lifecycle, from model development and training to deployment, monitoring, and management.  These MLOps tools bridge the gap between data science and production, ensuring efficient workflows, optimized model performance, and the smooth integration of machine learning models into real-world applications across various industries.

MLOPs Market Dynamics

Drivers

  • Growing Demand for Improved Model Governance and Explainability

The growing demand for improved model governance and explainability is a significant driver propelling the global MLOps (machine learning operations) market forward. As organizations increasingly integrate machine learning models into their operations, there is a heightened emphasis on ensuring the reliability, transparency, and accountability of these models. Enhanced model governance involves establishing stringent policies and controls to manage the entire lifecycle of machine learning models, addressing aspects such as version control, compliance, and risk management. Additionally, the need for enhanced explainability is driving the development of tools and techniques to interpret model decisions, providing stakeholders with insights into model behavior and enabling informed decision-making. This emphasis on governance and explainability underscores the critical role that MLOps solutions play in fostering trust, compliance, and reliability within machine learning deployments, thereby fueling market growth.

  • Rising Cloud Adoption and Scalability

The escalating adoption of cloud computing and the pursuit of scalability represent pivotal drivers propelling the global MLOps (machine learning operations) market. With organizations increasingly leveraging cloud platforms to host their machine learning infrastructure, there arises a pressing need for MLOps solutions capable of seamlessly integrating with cloud environments and facilitating scalable model deployment and management. Cloud-based MLOps services offer unparalleled flexibility, enabling businesses to rapidly scale their machine learning operations in response to fluctuating demand while also streamlining collaboration, version control, and resource optimization. As a result, the convergence of rising cloud adoption and scalability requirements underscores the indispensable role of MLOps solutions in orchestrating efficient, agile, and scalable machine learning workflows on a global scale.

Opportunities

  • Integration with Emerging Technologies

Integration with emerging technologies presents a significant opportunity for the global MLOps market. As new technologies such as artificial intelligence (AI), edge computing, Internet of Things (IoT), and blockchain continue to evolve, there arises a complementary need for advanced MLOps solutions that can seamlessly integrate with these emerging technologies. Leveraging MLOps tools and practices, organizations can enhance the efficiency, reliability, and scalability of their AI and machine learning initiatives across diverse domains. Integration with emerging technologies enables MLOps platforms to address complex use cases, such as real-time analytics, predictive maintenance, autonomous systems, and personalized user experiences, thereby unlocking new avenues for innovation and competitive differentiation in the market.

  • Rising Focus on SMEs and Individual Developers

The growing focus on small and medium enterprises (SMEs) and individual developers presents a significant opportunity for the Global MLOps Market. As the adoption of machine learning and AI expands beyond large enterprises, SMEs and individual developers are increasingly seeking accessible and cost-effective MLOps solutions tailored to their specific needs and resource constraints. Catering to this growing segment of the market, MLOps providers into a vast pool of potential customers eager to leverage machine learning capabilities for enhancing their products, services, and operations. Moreover, empowering SMEs and individual developers with user-friendly MLOps platforms can democratize access to advanced analytics and automation, fostering innovation and driving broader adoption of machine learning technologies across diverse industries and applications.

Restraints/Challenges

  • Rising Data Security Risks

The escalation of data security risks poses a substantial challenge for the global MLOPs market. With the proliferation of sensitive data utilized in machine learning operations, including personally identifiable information and proprietary business data, the potential for data breaches, unauthorized access, and malicious attacks becomes increasingly pronounced. Ensuring the confidentiality, integrity, and availability of data throughout the MLOps lifecycle, from training to deployment and beyond, requires robust security measures and adherence to stringent compliance standards. However, the complexity of MLOps workflows, coupled with the distributed nature of data processing and storage, complicates security efforts and heightens vulnerability to cyber threats.

  • Complexity of MLOps Tools

The complexity associated with MLOps tools emerges as a significant challenge for the Global MLOps Market. While these tools offer advanced capabilities for managing and deploying machine learning models, their intricate nature often presents barriers to adoption, particularly for organizations lacking specialized expertise or resources. Complex MLOps tools may require extensive training and technical proficiency to effectively navigate, leading to longer implementation times, higher costs, and increased risk of errors. Additionally, the rapid pace of innovation in the MLOps space further compounds this challenge, as organizations struggle to keep pace with evolving technologies and best practices.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, the impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact the Data Bridge Market Research for an Analyst Brief, our team will help you make an informed market decision to achieve market growth.

Recent Developments

  • In May 2021, Google Cloud launched Vertex AI, a managed machine learning platform, integrating various services for building, training, and deploying machine learning models, simplifying the AI development lifecycle. This initiative aimed to streamline model development and deployment processes, enabling organizations to accelerate AI adoption and achieve business objectives efficiently
  • In September 2019, DataRobot launched its MLOps solution after acquiring ParallelM, integrating model management and monitoring capabilities for centralized deployment, monitoring, and governance of machine learning models across enterprises, ultimately enhancing AI deployment efficiency. This initiative aimed to address the challenges faced by organizations in deriving measurable value from AI projects by providing a comprehensive solution for automating and managing the entire machine learning lifecycle

Global MLOPs Market Scope

The market is segmented on the basis of component, deployment mode , organization size, and industry verticals. The growth amongst these segments will help you analyze meager growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component

  • Platform
  • Service

Deployment Mode

  • On Premise
  • Cloud
  • Hybrid

Organization Size

  • Large Enterprises
  • Small and Medium-sized Enterprises (SMEs)

Industry Verticals

  • Financial Services (BFSI)
  • Manufacturing
  • Information Technology (IT) and Telecom
  • Retail and E-commerce
  • Healthcare
  • Others

MLOPs market Region Analysis/Insights

The market is analyzed and market size insights and trends are provided by region, component, deployment mode , organization size, and industry verticals, as referenced above.

The regions covered in the market are North America, South America, Europe, Asia-Pacific, and the Middle East and Africa. The countries covered in the global MLOPs market report are U.S., Canada, Mexico, Brazil, Argentina, the Rest of South America, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of the Middle East and Africa.

North America dominates the global MLOps market for several reasons. The region boasts a robust ecosystem of technology companies, research institutions, and skilled professionals specializing in machine learning and data science, fostering innovation and driving market leadership. Additionally, North America is home to many leading cloud service providers, offering scalable infrastructure and advanced MLOps solutions that cater to diverse business needs. Moreover, the region's strong regulatory environment, coupled with a mature enterprise market, encourages widespread adoption of MLOps practices to ensure compliance, governance, and risk management. Furthermore, North America's entrepreneurial culture and venture capital ecosystem facilitate the rapid growth of startups and emerging players in the MLOps space, contributing to the region's dominance in the global market. Overall, the convergence of technological expertise, supportive infrastructure, regulatory frameworks, and entrepreneurial dynamism positions North America as a frontrunner in driving the advancement and adoption of MLOps worldwide.

The Asia-Pacific region emerges as the fastest-growing region in the global MLOPs market due to several key factors. The region is witnessing rapid digital transformation across various industries, driving the adoption of machine learning and AI technologies to enhance business efficiency and competitiveness. As organizations in Asia-Pacific increasingly recognize the strategic importance of data-driven insights, there is a growing demand for MLOps solutions to streamline the development, deployment, and management of machine learning models.

The region section of the report also provides individual market-impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as downstream and upstream value chain analysis, technical trends, and Porter’s five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and the challenges faced due to large or scarce competition from local and domestic brands, the impact of domestic tariffs, and trade routes are considered while providing forecast analysis of the region data.   

Competitive Landscape and MLOPs market Share Analysis

The market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, and application dominance. The above data points provided are only related to the companies' focus related to the market.

Some of the major players operating in the market are:

  • Databricks (U.S.)
  • Domino Data Lab (U.S.)
  • Kubeflow (by Google) (U.S.)
  • Amazon SageMaker (U.S.)
  • Paperspace Gradient (U.S.)
  • Fiddler AI (U.S.)
  • MLflow (by Databricks) (U.S.)
  • Valohai (Finland)
  • Pachyderm (U.S.)
  • ZenML (Germany)


SKU-

Table of Content

Please fill in the below form for detailed Table of Content

First name is required
Last name is required
Please enter Contact No.
Email is required
Please enter job tital
Please enter company name
Please select country

List of Table

Please fill in the below form for detailed List of Table

First name is required
Last name is required
Please enter Contact No.
Email is required
Please enter job tital
Please enter company name
Please select country

List of Figure

Please fill in the below form for detailed List of Figure

First name is required
Last name is required
Please enter Contact No.
Email is required
Please enter job tital
Please enter company name
Please select country

View Infographics

Please fill in the below form for detailed Infographics

First name is required
Last name is required
Please enter Contact No.
Email is required
Please enter job tital
Please enter company name
Please select country
CHOOSE LICENCE TYPE
  • 7000.00
  • 4800.00
  • 3200.00
  • 8000.00
  • 15000.00
Why Choose Us
Unlocking New Opportunities on this Report Post Covid-19