round button
Leave a message

Global Edge Artificial Intelligence (AI) Hardware Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2032

Request for TOC Request for TOC Speak to Analyst Speak to Analyst Buy Now Buy Now Inquire Before Buying Inquire Before Free Sample Report Free Sample Report

Global Edge Artificial Intelligence (AI) Hardware Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2032

  • Semiconductors and Electronics
  • Upcoming Report
  • Jan 2025
  • Global
  • 350 Pages
  • No of Tables: 60
  • No of Figures: 220

Global Edge Ai Hardware Market

Market Size in USD Billion

CAGR :  % Diagram

CanvasJS.com
Diagram Forecast Period
2025 –2031
Diagram Market Size (Base Year)
USD 1.86 Billion
Diagram Market Size (Forecast Year)
USD 4.94 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Global Edge Artificial Intelligence (AI) Hardware Market Segmentation, By Device (Smartphones, Cameras, Robots, Wearable, Smart Speaker, Automotive, and Smart Mirror), Processors (Central Processing Unit (CPU), Graphics Processing Unit (GPU), Application-Specific Integrated Circuit (ASIC) and Others), Power Consumption (Less than 1W, 1-3W, 3-5W, 5-10W, and More than 10W), Process (Training and Inference), End User Industry (Consumer Electronics, Smart Home, Automotive and Transportation, Government, Healthcare, Industrial, Aerospace and Defence, Construction, and Others) – Industry Trends and Forecast to 2032

Edge Artificial Intelligence (AI) Hardware Market

Edge Artificial Intelligence (AI) Hardware Market Analysis

The Edge Artificial Intelligence (AI) hardware market is experiencing rapid growth due to advancements in technology and the increased adoption of AI applications. Edge AI refers to processing data closer to the source (on devices such as smartphones, IoT devices, and autonomous vehicles) instead of relying on centralized cloud data centers. Recent innovations in semiconductor chips, such as specialized AI processors and neuromorphic computing, have significantly improved the efficiency and power of edge devices.

The latest methods include the development of low-power AI chips and edge computing frameworks designed to run machine learning models efficiently at the edge. These technologies support real-time data processing, reducing latency and enhancing the speed of decision-making in applications such as smart homes, industrial automation, and autonomous systems.

As businesses increasingly demand faster and more reliable AI-driven solutions, edge AI hardware is gaining momentum. The market is further driven by the need for improved privacy and security, as edge devices can process data locally without needing to transfer it to the cloud, offering more control over sensitive information. This trend is expected to continue fueling market growth.

Edge Artificial Intelligence (AI) Hardware Market Size

The global edge artificial intelligence (AI) hardware market size was valued at USD 1.86 billion in 2024 and is projected to reach USD 4.94 billion by 2032, with a CAGR of 20.84% during the forecast period of 2025 to 2032. In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include in-depth expert analysis, geographically represented company-wise production and capacity, network layouts of distributors and partners, detailed and updated price trend analysis and deficit analysis of supply chain and demand.

Edge Artificial Intelligence (AI) Hardware Market Trends

“Increased Adoption of AI-Powered Edge Devices”

One specific trend driving growth in the edge artificial intelligence (AI) hardware market is the increased adoption of AI-powered edge devices. These devices, such as smart cameras, sensors, and autonomous vehicles, are designed to process data locally, reducing latency and bandwidth consumption. With industries such as manufacturing, healthcare, and automotive relying on real-time data analysis, this trend is crucial. For instance, in smart factories, edge AI enables real-time defect detection, enhancing operational efficiency. In addition, autonomous vehicles use edge AI to process sensor data for instant decision-making, boosting safety and performance. As the demand for real-time processing grows, edge AI hardware continues to gain traction across various sectors.

Report Scope and Edge Artificial Intelligence (AI) Hardware Market Segmentation

Attributes

Edge Artificial Intelligence (AI) Hardware Key Market Insights

Segments Covered

  • By Device: Smartphones, Cameras, Robots, Wearable, Smart Speaker, Automotive, and Smart Mirror
  • By Processors: Central Processing Unit (CPU), Graphics Processing Unit (GPU), Application-Specific Integrated Circuit (ASIC) and Others
  • By Power Consumption: Less than 1W, 1-3W, 3-5W, 5-10W, and More than 10W
  • By Process: Training and Inference
  • By End User Industry: Consumer Electronics, Smart Home, Automotive and Transportation, Government, Healthcare, Industrial, Aerospace and Defence, Construction, and Others

Countries Covered

U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America

Key Market Players

Cisco Systems, Inc. (U.S.), IBM (U.S.), Intel Corporation (U.S.), SAMSUNG (South Korea), Google (U.S.), Microsoft (U.S.), Micron Technology, Inc (U.S.), NVIDIA Corporation (U.S.), Oracle (U.S.), Arm Limited (UK), Xilinx (U.S.), Advanced Micro Devices, Inc (U.S.), Dell (U.S.), Hewlett Packard Enterprises Development LP (U.S.), Habana Labs Ltd (U.S.), Facebook, Inc (U.S.), Synopsys, Inc (U.S.), Nutanix (U.S.), Pure Storage, Inc (U.S.), Amazon Web Services, Inc (U.S.)

Market Opportunities

  • Advancements in AI and ML Algorithms
  • Rising AI in Consumer Electronics

Value Added Data Infosets

In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include in-depth expert analysis, geographically represented company-wise production and capacity, network layouts of distributors and partners, detailed and updated price trend analysis and deficit analysis of supply chain and demand.

Edge Artificial Intelligence (AI) Hardware Market Definition

Edge Artificial Intelligence (AI) hardware refers to specialized computing devices designed to process AI tasks directly at the data source, or "edge," instead of relying on cloud-based servers. These devices, such as edge GPUs, TPUs, and custom AI chips, enable real-time data processing with lower latency, reduced bandwidth usage, and enhanced privacy. Commonly used in IoT devices, autonomous vehicles, industrial automation, and smart cameras, edge AI hardware optimizes performance by allowing AI models to run locally. This reduces dependence on centralized cloud infrastructures, improving speed, reliability, and scalability in AI-driven applications.

Edge Artificial Intelligence (AI) Hardware Market Dynamics

Drivers

  • Increased Adoption of IoT Devices

The rapid growth of the Internet of Things (IoT) is a significant driver for the edge AI hardware market. As IoT devices such as smart cameras, wearables, and industrial sensors proliferate, there is an increasing demand for local data processing. Edge AI hardware allows these devices to process data on-site, reducing latency and bandwidth costs associated with cloud computing. For instance, in smart home systems, wearables such as fitness trackers utilize edge AI for real-time data analysis, enabling personalized feedback without relying on cloud servers. This decentralized approach enhances efficiency, ensures privacy, and minimizes dependence on continuous cloud connectivity, fueling the demand for edge AI hardware solutions.

  • Deployment of 5G

The deployment of 5G networks is a significant driver for the edge AI hardware market. With 5G's faster speeds and lower latency, edge devices can now process data locally, reducing the reliance on cloud servers and enabling real-time decision-making. For instance, in February 2021, Telstra partnered with AWS to combine its 5G network with AWS’s edge technology. This collaboration seeks to improve the performance of 5G applications by leveraging AWS’s edge computing integrated into Telstra’s 5G infrastructure. The partnership aims to enhance edge computing capabilities, unlocking the potential of real-time applications across various industries in Australia.

Opportunities

  • Advancements in AI and ML Algorithms

The continuous development of more efficient machine learning (ML) and artificial intelligence (AI) algorithms tailored for edge devices is unlocking significant opportunities in the edge AI hardware market. These algorithms are designed to optimize performance on hardware with limited processing power and energy consumption, enabling advanced AI functionalities on smaller, energy-efficient devices. This is particularly valuable for applications such as smart cameras, wearables, and autonomous systems that require real-time decision-making without relying on cloud computing. For instance, in March 2024, HPE unveiled new GenAI training and inference products, using microservices and Nvidia GPU software. Their edge-to-data-center, hybrid, and cloud solutions are designed to accelerate GenAI capabilities. The introduction includes supercomputing systems powered by Nvidia components, aimed at enhancing AI model training and inference, addressing enterprise needs for AI-driven performance and scalability. As AI models become more efficient and lightweight, businesses across industries such as healthcare, automotive, and manufacturing can implement cost-effective and scalable edge AI solutions, accelerating market growth.

  • Rising AI in Consumer Electronics

The increasing integration of AI in consumer electronics such as smart speakers, TVs, and cameras presents a significant opportunity for the edge AI hardware market. As devices become smarter, they require more powerful and efficient hardware to process data locally, ensuring quick responses and enhanced user experiences. For instance, AI-driven features such as voice recognition in smart speakers or facial recognition in cameras demand high-performance edge computing solutions. This demand is driving the need for specialized AI chips and hardware capable of handling complex tasks without relying on cloud-based processing, ultimately offering a competitive edge for manufacturers and contributing to the growth of the edge AI hardware market.

Restraints/Challenges

  • High Power Consumption

High power consumption remains a significant challenge for the edge AI hardware market. Edge AI devices require substantial computational power to process data locally, which results in increased energy consumption. This issue is particularly problematic for battery-operated or portable devices that have limited power supply. As the demand for high-performance AI models grows, the need for efficient energy usage becomes more critical. Devices with insufficient battery life can lead to shorter operational times, necessitating frequent recharging or larger batteries, which in turn adds to the device's weight and size. Consequently, the high-power consumption limits the widespread adoption of edge AI solutions, especially in applications where portability and long battery life are essential.

  • Data Privacy and Security

Data privacy and security pose significant challenges to the edge AI hardware market. As sensitive data is processed locally on edge devices, ensuring its confidentiality and protection from cyber threats becomes a critical concern. These devices are often more vulnerable to security breaches compared to centralized cloud systems, making them attractive targets for cyberattacks. In addition, compliance with evolving data protection regulations, such as GDPR, further complicates the situation. The decentralized nature of edge devices means that enforcing consistent security measures across all devices is difficult, increasing the risk of data leakage or unauthorized access. This lack of robust security frameworks hampers the widespread adoption and growth of the market.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

Edge Artificial Intelligence (AI) Hardware Market Scope

The market is segmented on the basis of device, processors, power consumption, and end user industry. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Device

 Processors

  • Central Processing Unit (CPU)
  • Graphics Processing Unit (GPU)
  • Application-Specific Integrated Circuit (ASIC)
  • Others

 Power Consumption

  • Less than 1W
  • 1-3W
  • 3-5W
  • 5-10W
  • More than 10W

 Process

  • Training
  • Inference

 End User Industry

Edge Artificial Intelligence (AI) Hardware Market Regional Analysis

The market is analyzed and market size insights and trends are provided by device, processors, power consumption, and end user industry as referenced above.

The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).

North America is expected to dominate the edge artificial intelligence (AI) hardware market due to the high adoption rate of AI-based servers and the presence of prominent AI technology providers within the region. Companies in North America, such as NVIDIA, Intel, and IBM, are driving advancements in AI hardware technologies. The region's strong infrastructure, skilled workforce, and investments in AI research further support its dominance, positioning North America as a key player in the edge AI hardware sector.

Asia-Pacific is expected to witness significant growth in the edge artificial intelligence (AI) hardware market due to the ongoing construction of "new infrastructure" projects, such as 5G networks and data centers. The increasing adoption of AI-driven solutions across industries such as telecommunications, manufacturing, and healthcare further boosts market demand. In addition, the rise in smart city initiatives and the need for real-time data processing are key drivers supporting the expansion of AI hardware technologies in the region.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Edge Artificial Intelligence (AI) Hardware Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Edge Artificial Intelligence (AI) Hardware Market Leaders Operating in the Market Are:

  • Cisco Systems, Inc. (U.S.)
  • IBM (U.S.)
  • Intel Corporation (U.S.)
  • SAMSUNG (South Korea)
  • Google (U.S.)
  • Microsoft (U.S.)
  • Micron Technology, Inc (U.S.)
  • NVIDIA Corporation (U.S.)
  • Oracle (U.S.)
  • Arm Limited (UK)
  • Xilinx (U.S.)
  • Advanced Micro Devices, Inc (U.S.)
  • Dell (U.S.)
  •  Hewlett Packard Enterprises Development LP (U.S.)
  •  Habana Labs Ltd (U.S.)
  •  Facebook, Inc (U.S.)
  •  Synopsys, Inc (U.S.)
  • Nutanix (U.S.)
  • Pure Storage, Inc (U.S.)
  •  Amazon Web Services, Inc (U.S.)

Latest Developments in Edge Artificial Intelligence (AI) Hardware Market

  • In July 2024, VIA Technologies has partnered with Rutronik to enhance the accessibility of its advanced IoT, edge AI, and computer vision technologies. This strategic collaboration aims at industrial, retail, and commercial sectors, focusing on real-time data processing and reduced latencies. VIA’s intelligent edge solutions, equipped with MediaTek Genio processors, are tailored for diverse applications in these sectors
  • In July 2024, TRUMPF has teamed up with SiMa.ai, a software-centric company specializing in embedded edge machine learning systems, to integrate AI capabilities into TRUMPF’s laser systems. This collaboration targets applications in welding, cutting, marking, and powder metal 3D printing. The alliance will empower TRUMPF’s laser technologies with advanced artificial intelligence for more efficient and precise operations
  • In March 2024, Edge Impulse Inc. launched a direct integration with Arm Keil MDK, offering access to advanced machine learning (ML) and AI models. This integration facilitates collaboration among embedded systems specialists and teams, helping them develop and bring edge AI tools to market more efficiently. The initiative targets simplifying the development of ML models for edge devices
  • In March 2024, HPE unveiled new GenAI training and inference products, using microservices and Nvidia GPU software. Their edge-to-data-center, hybrid, and cloud solutions are designed to accelerate GenAI capabilities. The introduction includes supercomputing systems powered by Nvidia components, aimed at enhancing AI model training and inference, addressing enterprise needs for AI-driven performance and scalability
  • In September 2022, Nvidia expanded its Edge Artificial Intelligence technology for healthcare and robotics with the Nvidia IGX Platform. Targeted at both industrial and medical applications, the platform is designed to accelerate performance, enabling real-time insights. This expansion provides cutting-edge AI solutions that enhance the functionality and responsiveness of critical sectors such as healthcare and robotics
  • In February 2021, Telstra partnered with AWS to combine its 5G network with AWS’s edge technology. This collaboration seeks to improve the performance of 5G applications by leveraging AWS’s edge computing integrated into Telstra’s 5G infrastructure. The partnership aims to enhance edge computing capabilities, unlocking the potential of real-time applications across various industries in Australia

SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

Research Methodology

Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.

The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.

Customization Available

Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.

Frequently Asked Questions

The Rise in Awareness regarding Artificial Intelligence (AI), Emergence of AI Coprocessors and Increase in Number of AI Devices are the Growth drivers of the Edge Artificial Intelligence (AI) Hardware Market.
The device, processors, power consumption, and end-user industry are the factors on which the Edge Artificial Intelligence (AI) Hardware Market research is based.
The major companies in the Edge Artificial Intelligence (AI) Hardware Market are Cisco (U.S.), IBM (U.S.), Intel Corporation (U.S.), SAMSUNG (South Korea), Google (U.S.), Microsoft (U.S.), Micron Technology, Inc (U.S.), NVIDIA Corporation (U.S.), Oracle (U.S.), Arm Limited (UK), Xilinx (U.S.), Advanced Micro Devices, Inc (U.S.), Dell (U.S.), Hewlett Packard Enterprises Development LP (U.S.), Habana Labs Ltd (U.S.), Facebook, Inc (U.S.), Synopsys, Inc (U.S.), Nutanix (U.S.), Pure Storage, Inc (U.S.), Amazon Web Services, Inc (U.S.).
Mpgyi
a