Global Ai In Patient Management Market
Market Size in USD Billion
CAGR : %
Forecast Period |
2024 –2031 |
Market Size (Base Year) |
USD 1.99 Billion |
Market Size (Forecast Year) |
USD 15.13 Billion |
CAGR |
|
Major Markets Players |
Global AI in Patient Management Market, By Technology (Machine Leaning, NLP), Application (Health Record Analysis, Pattern Analysis, Location Based Analysis, History Based Appointment, Others), End User (Hospitals, Diagnostic Centers, Ambulatory Surgical Centers, Others) - Industry Trends and Forecast to 2031.
AI in Patient Management Market Analysis and Size
Artificial Intelligence (AI) in patient management is a rapidly evolving that aims to improve care quality, lower costs, and improve patient experience overall. This is accomplished by utilizing automation and data-driven insights, which support healthcare professionals in their decision-making and patient interactions. All patient management software used by healthcare facilities uses artificial intelligence to make monitoring, diagnosis, and treatment easier. Increased healthcare data and dataset complexity are the main factors driving market expansion and necessitating the use of AI in patient management software.
Data Bridge Market Research analyses that the global AI in patient management market which was USD 1.99 billion in 2023, is likely to reach USD 15.13 billion by 2031, and is expected to undergo a CAGR of 28.90% during the forecast period. “Hospitals” accounts for the largest market share in the end-user segment of AI in the patient management market due to the benefits it offers in the management of large patient data. In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include depth expert analysis, patient epidemiology, pipeline analysis, pricing analysis, and regulatory framework.
Report Scope and Market Segmentation
Report Metric |
Details |
Forecast Period |
2024 to 2031 |
Base Year |
2023 |
Historic Years |
2022 (Customizable to 2016-2021) |
Quantitative Units |
Revenue in USD Billion, Volumes in Units, Pricing in USD |
Segments Covered |
By Technology (Machine Leaning, NLP), Application (Health Record Analysis, Pattern Analysis, Location Based Analysis, History Based Appointment, Others), End User (Hospitals, Diagnostic Centers, Ambulatory Surgical Centers, Others) |
Countries Covered |
U.S., Canada Mexico, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East and Africa, Brazil, Argentina, Rest of South America. |
Market Players Covered |
Welltok Inc (U.S.), Intel Corporation (U.S.), NVIDIA Corporation (U.S.), Google LLC (U.S.), International Business Machines Corporation (IBM) (U.S.), Microsoft Corporation (U.S.), Geneva Vision, Inc. (U.S.), Enlitic, Inc. (U.S.), Next IT Corporation (U.S.), iCarbonX (China), Octopus Health (U.S.), Sweetech Health Ltd (U.K.), Superwise.ai (U.S.) |
Market Opportunities |
|
Market Definition
AI in patient management refers to the application of artificial intelligence technologies to streamline and enhance various aspects of healthcare delivery and patient care. This includes tasks such as automating administrative processes, analyzing vast datasets for personalized treatment plans, and facilitating remote patient monitoring. AI in patient management utilizes machine learning algorithms to interpret medical data, aiding in diagnostics, predicting disease outcomes, and optimizing treatment strategies. In addition, it can improve the efficiency of healthcare workflows, reduce administrative burdens on healthcare professionals, and contribute to the development of precision medicine by tailoring interventions based on individual patient characteristics. The integration of AI technologies also holds the potential to transform patient-doctor interactions, support telemedicine initiatives, and advance overall healthcare outcomes through data-driven insights and proactive healthcare management.
Global AI in Patient Management Market Dynamics
Drivers
- Rising Demand for Efficiency and Automation
AI streamlines healthcare workflows by automating routine tasks, such as appointment scheduling, administrative paperwork, and billing processes. This reduces administrative burdens on healthcare professionals, allowing them to allocate more time to patient interaction and care delivery. The result is improved overall operational efficiency within healthcare institutions.
- Advancements in data analytics and insights
AI's data analytics capabilities enable healthcare providers to shift through vast amounts of patient data, including electronic health records (EHRs), to extract meaningful insights. This analysis goes beyond human capacity, identifying patterns, predicting disease risks, and offering personalized treatment recommendations. These data-driven insights enhance clinical decision-making, ultimately leading to more effective and tailored patient care.
- Rise in remote patient monitoring
AI-driven remote monitoring utilizes connected devices to track patients' health in real-time. Wearable sensors and other IoT devices collect data on vital signs, medication adherence, and overall health trends. AI algorithms analyze this information, providing healthcare professionals with timely alerts for potential issues. This proactive approach enables early intervention, reduces hospital readmissions, and fosters a more preventive and personalized healthcare model.
Opportunities
- Precision medicine advancements
AI is poised to revolutionize precision medicine by analyzing vast datasets, including genetic information, lifestyle factors, and environmental influences. By identifying intricate patterns and correlations within this data, AI algorithms can offer tailored treatment plans that cater to an individual's unique genetic makeup and health profile. This personalized approach holds the promise of optimizing treatment efficacy, reducing adverse reactions, and accompanying in a new era of targeted therapies.
- Rise in predictive healthcare analytics
The integration of AI in predictive analytics enables healthcare professionals to anticipate disease trends, identify at-risk populations, and forecast individual health trajectories. By analyzing historical data and real-time information, AI models can provide valuable insights for preventive interventions, early detection of health issues, and the optimization of resource allocation. This proactive approach has the potential to significantly improve public health outcomes, reduce healthcare costs, and shift the focus from reactive to preventive healthcare strategies.
Restraints/Challenges
- Data privacy and security concerns
Protecting patient data from unauthorized access, breaches, and misuse is a critical challenge. The integration of AI in patient management necessitates robust cybersecurity measures and strict adherence to privacy regulations like HIPAA. Balancing the potential benefits of AI with the imperative to safeguard patient confidentiality requires ongoing diligence and investment in secure data handling practices.
- Interoperability issues
Healthcare systems often use diverse platforms and technologies that struggle to communicate seamlessly. Interoperability challenges hinder the efficient exchange of patient data, impeding the effectiveness of AI applications. Standardizing data formats and protocols is essential to bridge these interoperability gaps, promoting a cohesive healthcare ecosystem where AI can contribute to holistic patient management.
This AI in patient management market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the AI in patient management market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Global AI in Patient Management Market Scope
The AI in patient management market is segmented on the basis of technology, application and end user. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Technology
- Machine Leaning
- NLP
Application
- Health Record Analysis
- Pattern Analysis
- Location Based Analysis
- History Based Appointment
- Others
End User
- Hospitals
- Diagnostic Centers
- Ambulatory Surgical Centers
- Others
Global AI in Patient Management Market Regional Analysis/Insights
The AI in patient management market is analyzed and market size insights and trends are provided by country, technology, application, and end user as referenced above.
The countries covered in the AI in patient management market report are U.S., Canada, Mexico, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, rest of Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, rest of Asia-Pacific, Saudi Arabia, U.A.E., South Africa, Egypt, Israel, rest of Middle East and Africa, Brazil, Argentina and rest of South America.
North America is expected to dominate the market and is expected to grow with a highest CAGR in the forecast period due to well-developed healthcare system and rising demand for management of large patient data.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points like down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Competitive Landscape and AI in Patient Management Market Share Analysis
The AI in patient management market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to AI in patient management market.
Some of the major players operating in the AI in patient management market are:
- Welltok Inc (U.S.)
- Intel Corporation (U.S.)
- NVIDIA Corporation (U.S.)
- Google LLC (U.S.)
- International Business Machines Corporation (IBM) (U.S.)
- Microsoft Corporation (U.S.)
- Geneva Vision, Inc. (U.S.)
- Enlitic, Inc. (U.S.)
- Next IT Corporation (U.S.)
- iCarbonX (China)
- Octopus Health (U.S.)
- Sweetech Health Ltd (U.K.)
- Superwise.ai (U.S.)
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Research Methodology
Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.
The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.
Customization Available
Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.