Visão geral

Nos últimos anos, a direção autônoma e também denominada robotáxis tornou-se um dos trending topics da indústria automotiva. O mercado automóvel, dos transportes e da mobilidade em geral está a passar por uma mudança social, tecnológica e económica transformacional, mudando fundamentalmente a forma como as pessoas e os produtos são transportados. Num contexto de crescimento populacional contínuo, urbanização e preocupações ambientais, novas formas de mobilidade são fundamentais para apoiar os centros populacionais e a actividade económica de amanhã.

De acordo com o período de previsão de 2022 a 2029, o mercado de veículos autônomos de luxo deverá experimentar um crescimento significativo, com uma taxa projetada de 36,16%. O relatório da Data Bridge Market Research oferece análises abrangentes e insights sobre o mercado, destacando os fatores que deverão ter uma influência proeminente em seu crescimento durante este período.

Os gigantes da tecnologia, principais players de software, e as novas startups de mobilidade também estão prestes a colher os frutos de uma era de mobilidade futura totalmente nova. Hoje em dia, o carro está se transformando em uma plataforma para atender diversas funções. Portanto, os veículos autónomos estão a tornar-se produtos muito mais orientados por software em comparação com os carros tradicionais. Um carro autônomo é um veículo capaz de sentir o ambiente e operar sem envolvimento humano. Avanços na tecnologia de sensores, LiDAR e imagens de radar 4D, entre outros, estão abrindo caminho para um veículo totalmente autônomo. Estas tecnologias estão a ser utilizadas para recolher dados específicos em tempo real que permitem ao veículo tomar decisões atempadas.

Um passageiro humano não é obrigado a assumir o controle do veículo em nenhum momento, nem é obrigado a estar presente. Os fabricantes e fornecedores tradicionais trabalham arduamente para reduzir continuamente os ciclos de desenvolvimento e acompanhar a transição inevitável para a nova era do software. No entanto, modelos de trabalho ágeis colaborativos predominantemente conhecidos na indústria de software e abordagens de gestão de cooperação mais inovadoras abrem caminho para enfrentar estes desafios e transformá-los em oportunidades.

O que é veículo autônomo?

The Digital Transformation of Mobility: Self-Driven Cars

O aprendizado profundo é o aspecto central da parte de automação dos veículos autônomos. Os AVs podem tomar decisões calculadas com base em vários modelos de treinamento e aquisição de dados em tempo real. Os recentes desenvolvimentos de aprendizagem profunda e inteligência artificial permitiram que os carros autónomos respondessem a situações de alto risco e combatessem problemas de detecção de obstáculos devido às condições meteorológicas. Um carro autônomo ou carro sem motorista é um veículo que usa uma combinação de sensores, câmeras, radar e inteligência artificial (IA) para viajar entre destinos sem um operador humano. As empresas que desenvolvem e/ou testam carros autônomos incluem Audi, BMW, Ford, Google, General Motors, Tesla, Volkswagen e Volvo.

Cenário do mercado mundial de veículos autônomos

O veículo autônomo está revolucionando a experiência de mobilidade do consumidor em todo o mundo. Com os avanços da tecnologia, os carros autônomos serão mais seguros do que os veículos operados por humanos. Nos EUA, 30.000 vidas são perdidas anualmente em acidentes com veículos motorizados, muitas vezes devido à fadiga, erro humano e condução sob o efeito do álcool.

Hoje em dia, a maioria dos carros inclui recursos básicos de ADAS (sistemas avançados de assistência ao motorista) e podem funcionar sem esses comportamentos, potencialmente salvando milhares de vidas. A maioria dos carros autônomos vem com um sistema automatizado de frenagem de emergência projetado para detectar quando o carro está se aproximando de um perigo, como uma parada repentina no trânsito. Além disso, sistemas automatizados de frenagem de emergência podem ser configurados para detectar e responder a pedestres, ciclistas ou outros veículos na estrada. Os primeiros carros autônomos foram lançados pela Waymo em 2018 para fornecer a bilhões de pessoas uma mobilidade mais segura, limpa e conveniente. A frota autônoma de 600 carros da Waymo percorreu mais milhas autônomas do que qualquer concorrente. Na verdade, em outubro de 2018, a frota percorreu mais de 16 milhões de quilômetros em vias públicas de 25 cidades, embora o foco tenha sido nas ruas de Mountain View (CA), Austin (TX), Kirkland (WA) e Phoenix (AZ) . Em agosto de 2018, a empresa de transporte privado Lyft anunciou que seus clientes pagaram por mais de 5.000 viagens autônomas em Las Vegas usando seu aplicativo móvel. O serviço foi lançado em Las Vegas em janeiro com 30 carros BMW, mas a empresa tinha 75 carros em sua frota naquela época.

Principais estratégias adotadas pelos fabricantes automotivos

Nível de automação em veículos autônomos

A Sociedade de Engenheiros Automotivos (SAE) define 6 níveis de automação de condução, variando de 0 (totalmente manual) a 5 (totalmente autônomo), que o Departamento de Transportes dos EUA adotou.

Nível 0 (sem automação de direção)

Veículo equipado sem recursos automatizados e o motorista tem controle total do veículo

Nível 1 (Assistência ao Condutor)

Veículo equipado com um ou mais recursos automatizados primários, como controle de cruzeiro, mas exige que o motorista execute todas as outras tarefas

Nível 2 (automação de direção parcial)

Veículo equipado com dois ou mais recursos principais, como controle de cruzeiro adaptativo. O veículo pode controlar a direção e a aceleração/desaceleração. Aqui, a automação fica aquém da direção autônoma porque um ser humano senta no banco do motorista e pode assumir o controle do carro a qualquer momento. Os sistemas Tesla Autopilot e Cadillac (General Motors) Super Cruise se qualificam como Nível 2

Nível 3 (automação de direção condicional)

Veículo equipado com recursos que permitem ao motorista renunciar à função crítica de segurança do veículo, dependendo do tráfego e das condições ambientais. Espera-se que o motorista assuma o controle do veículo, dadas as restrições dos recursos automatizados após um período de transição

Nível 4 (Alta Automação de Condução)

Os veículos de nível 4 podem operar em modo autônomo e a principal diferença entre a automação de nível 3 e a de nível 4 é que os veículos de nível 4 podem intervir se algo der errado ou se houver uma falha no sistema.

Por exemplo,

  • A NAVYA, uma empresa francesa, já está construindo e vendendo ônibus e táxis Nível 4 nos EUA que funcionam totalmente com energia elétrica e podem atingir uma velocidade máxima de 55 mph
  • Em novembro de 2019, a Volvo e o Baidu anunciaram uma parceria estratégica para desenvolver em conjunto veículos elétricos de nível 4 que atenderão o mercado de táxis robóticos na China

Nível 5 (Automação Total de Condução)

Veículo totalmente autônomo que monitora as condições da estrada e executa tarefas críticas de segurança durante a viagem, com ou sem motorista presente.

Fonte: MAR

A principal tecnologia de carros autônomos ou veículos autônomos

Controle automático, arquitetura, inteligência artificial, visão computacional e muitas outras tecnologias estão integradas ao carro autônomo, que é um produto de ciência da computação altamente desenvolvida, reconhecimento de padrões e tecnologia de controle inteligente.

Desafios enfrentados pelos carros autônomos

O principal obstáculo que os veículos autônomos de nível 5 enfrentam é que a tecnologia não é avançada o suficiente para criar um verdadeiro veículo autônomo de nível 5. Os veículos de teste Cruise da General Motors e os carros Nuro são apenas os primeiros passos no desenvolvimento de carros de nível 5. A desconfiança do público em relação aos veículos sem condutor é outro obstáculo que os veículos autónomos de nível 5 devem superar. Os atuais carros de nível 3 estiveram envolvidos em acidentes, o que levanta preocupações genuínas em termos de segurança com os carros de nível 5, uma vez que são totalmente autónomos. Além destes, muitos desafios ainda são enfrentados na concepção de sistemas totalmente autónomos para carros sem condutor.

Os carros autônomos lutam para interpretar situações incomuns, como um agente de trânsito acenando para os veículos passarem por um sinal vermelho. A programação simples baseada em regras nem sempre funciona porque é impossível codificar antecipadamente cada cenário. Conseqüentemente, a ideia de um veículo “sem motorista ou autônomo” na estrada tem intrigado pessoas de todas as esferas da vida, pois há muitos problemas relacionados ao controle com carros autônomos e muitos fatores móveis que precisam ser gerenciados. e regulado simultaneamente durante a condução.

Principais países preparados para veículos autônomos

A evolução contínua da tecnologia automóvel, incluindo tecnologias de assistência ao condutor e sistemas de condução automatizada, visa proporcionar benefícios de segurança ainda maiores. O mundo foi dominado por veículos autónomos e o seu desenvolvimento está a progredir incrivelmente. Embora a Holanda seja considerada o líder emergente neste índice de preparação para veículos autónomos devido à sua excelente infra-estrutura rodoviária, a um governo altamente favorável e à adopção entusiástica de veículos eléctricos, Singapura derrubou os Estados Unidos e ficou em segundo lugar, em grande parte devido à alteração do seu regulamento rodoviário. lei de trânsito que permite que veículos autônomos sejam testados em vias públicas.

Tabela 1: Índice de Prontidão de Veículos Autônomos

País

Classificação de Tecnologia e Inovação

Classificação de infraestrutura

Classificação de Política e Legislação

Aceitação do Consumidor

Classificação geral

Os Países Baixos

4

1

3

2

1

Cingapura

8

2

1

1

2

NÓS

1

7

10

4

3

Suécia

2

6

8

6

4

Reino Unido

5

10

4

3

5

Alemanha

3

12

5

12

6

Canadá

6

11

7

7

7

Fonte: Mídia e Comunicações Geoespaciais

Vantagens dos veículos autônomos

Tabela 2: Benefícios e Custos Potenciais de Veículos Autônomos

Benefícios

Custos/Problemas

Redução do estresse dos motoristas e aumento

Produtividade

 

Requer equipamentos, serviços e taxas adicionais do veículo

Reduz custos com táxis

motoristas de serviços e transportes comerciais

 

Falhas adicionais causadas pelo sistema

falhas, pelotões, velocidades de tráfego mais altas, assunção de riscos adicionais e aumento do total de viagens de veículos

 

Reduz a demanda por estacionamento nos destinos

Pode exigir padrões mais elevados de projeto e manutenção de estradas

Poderia facilitar o compartilhamento de carros e viagens, reduzindo a propriedade total de veículos e viagens, e os custos associados

 

Previsões optimistas sobre a condução autónoma podem desencorajar outras melhorias nos transportes e estratégias de gestão

Fonte:

Os veículos autónomos podem reduzir o stress e o tédio do condutor e aumentar a sua produtividade, permitindo aos passageiros trabalhar enquanto viajam. No entanto, por questões de segurança, os ocupantes devem usar cintos de segurança, restringindo o uso de camas no veículo e, como qualquer espaço confinado, os interiores dos veículos podem ficar desordenados e sujos. Além disso, os veículos autónomos podem proporcionar mobilidade independente a pessoas que, por qualquer motivo, não podem ou não devem conduzir. Isto beneficia diretamente esses viajantes e, ao melhorar o seu acesso à educação e às oportunidades de emprego, pode aumentar a sua produtividade e reduzir os encargos com motoristas para os seus familiares e amigos.

Desafios associados a veículos autônomos

Os veículos autônomos necessitam de diversos equipamentos e serviços para seu bom funcionamento. Como as falhas podem ser fatais, os veículos autónomos necessitam de componentes robustos e redundantes instalados e mantidos por especialistas, aumentando os custos de manutenção. Atualmente, acessórios opcionais para veículos, como partida remota, assistência ativa de faixa e câmeras de segurança, normalmente custam vários milhares de dólares, e assinaturas de serviços de navegação e segurança, como OnStar e TomTom, custam centenas de dólares por ano. A atualização para os serviços Full Self-Drive (FSD) da Tesla, que fornecem operação autônoma limitada, custou US$ 15.000 e, em 2022, os proprietários processaram a Tesla por propaganda enganosa de sua disponibilidade e benefícios. Os proprietários de veículos provavelmente precisarão assinar atualizações frequentes de software e serviços de mapeamento de navegação.

A maioria dos carros autônomos usa três tecnologias para navegar: LiDAR (Light Detection and Ranging), câmeras e radar. Ao dirigir, os sensores de radar detectam os reflexos das ondas de rádio dos objetos ao redor. Assim, um cálculo rápido do tempo necessário para a reflexão das ondas de rádio permite que o carro autônomo meça a proximidade de objetos próximos. Mas é provável que as ondas de rádio transmitidas por dois ou mais veículos próximos interfiram entre si, resultando em sinais falsos. ‍A classificação de imagens é feita treinando a rede neural convolucional (CNN) para reconhecer e classificar objetos. O problema da CNN é que ela não é a melhor solução para imagens com múltiplos objetos, pois é provável que o modelo não capture todos os objetos. No entanto, o sistema de posicionamento global (GPS) pode ser usado para detectar a posição exata de outros veículos autônomos, mas às vezes eles não são capazes de distinguir entre alguns objetos, como paredes, edifícios, detritos e árvores. Um carro autónomo ou autónomo deve ser capaz de distinguir os seus próprios sinais dos restantes, pelo que será um dos maiores desafios dos próximos anos.

A legislação é uma das características mais essenciais da condução autônoma. Em muitos casos, as leis estaduais e federais ficam confusas sobre quem seria o responsável pelos acidentes provocados por esses carros. Determinar quem é o culpado em reclamações de danos pessoais resultantes de acidentes automobilísticos de rotina já é bastante difícil. Como não existe uma definição distinta do condutor no caso de veículos autónomos, é mais difícil determinar quem causou o acidente e quais foram os seus efeitos. Além disso, na maioria dos carros autônomos, o software é o principal tomador de decisões e operador. Porém, o design pode variar dependendo do fabricante.

Embora o modelo de direção autônoma de visão computacional tenha um detector de objetos em tempo real, existe a possibilidade de que seu desempenho mude dependendo do clima, da iluminação e da localização em que se encontra. Os veículos autônomos precisam de vários conjuntos de dados para evitar possíveis acidentes causada pelas variáveis ​​acima mencionadas. Os veículos autônomos podem calcular distâncias e detectar sinais de trânsito, outros veículos e pedestres, empregando sensores e câmeras LiDAR em conjunto com dados de mapas tridimensionais (3D) e tecnologia de visão computacional. Para garantir a segurança dos passageiros e do veículo, a estimativa da profundidade é essencial. Embora várias outras ferramentas desempenhem papéis importantes, como LIDAR e radar de câmera, apoiá-los com uma visão estéreo é útil. Porém, isso abre espaço para muitas outras questões, como a disposição das câmeras, já que a distância entre as lentes e o sensor pode ser diferente para cada veículo, tornando o sistema de estimativa de profundidade mais desafiador.

Autoridades reguladoras em todo o país principal

Impacto do Covid-19 no mercado de veículos autônomos

A pandemia da COVID-19 trouxe uma enorme mudança na vida quotidiana, pelo que os sectores automóvel e de transportes estão atentos à forma como as mudanças no comportamento do consumidor podem afectar a adopção de tecnologias de veículos autónomos (VA) em todos os sectores da economia. . A pandemia da COVID-19 influenciou as operações de vários OEMs, desde a produção até a P&D. Embora possa haver uma interrupção de curto prazo no desenvolvimento e implementação de AV, esta interrupção pode abrir novas oportunidades para a adoção da tecnologia AV nos segmentos de consumo e acelerar a adoção em vários segmentos comerciais, uma vez que a tecnologia AV é vista como um componente crucial de resposta em momentos de emergência. A COVID-19 também está a remodelar as atitudes dos consumidores em relação ao transporte público de uma forma que pode beneficiar a tecnologia AV a longo prazo. Embora a hesitação dos consumidores em relação à compra de carros novos possa estar levando os OEMs a interromper o desenvolvimento de AV, o potencial de adoção de AV por empresas de logística, empresas de entrega e indústria de serviços de alimentação pode fornecer aos OEMs e outros participantes de AV a necessidade do mercado de impulsionar a tecnologia AV para o próximo nível. Num mundo onde permanecer saudável atualmente significa ficar longe dos nossos concidadãos, os camiões autónomos de longo curso, os veículos de entrega que atravessam a cidade e a entrega robótica de alimentos parecem mais apelativos do que nunca.

À medida que a COVID-19 coloca o lado humano do transporte de mercadorias em destaque, as empresas de logística precisam de sistemas autónomos em tempo real. Embora a poupança de custos e o trânsito ininterrupto de mercadorias sejam factores, a capacidade da COVID-19 de interromper o envio de mercadorias destacou o factor humano do transporte de mercadorias como um elo fraco na nossa cadeia de abastecimento nacional de mercadorias. Em situações de emergência, a capacidade de transportar mercadorias de forma eficiente e fiável ao longo da cadeia de abastecimento é mais importante do que nunca, especialmente em situações de pânico nas compras e restrições de abastecimento. Além disso, a dependência do sector automóvel na entrega just-in-time não pode permitir interrupções no fornecimento devido a interrupções no transporte rodoviário e na logística. Embora a procura dos consumidores pela compra de automóveis novos e usados ​​possa ter atrasado momentaneamente a adopção de sistemas AV no segmento de consumo, a pandemia da COVID-19 destacou a importância da AV no comércio quotidiano e na indústria logística.

Conclusão

Os veículos autônomos (VA) são considerados uma das inovações tecnológicas mais disruptivas devido a questões de aceitação dos clientes baseadas em segurança e ética, entre outras. Os VA estão mudando a forma como o mundo vê os veículos e a mobilidade humana e sendo uma inovação tecnológica significativa na indústria automotiva. Podem trazer uma série de benefícios, tais como o aumento da mobilidade, a redução da quantidade de recursos consumidos, um menor nível de emissões, uma diminuição da necessidade de lugares de estacionamento e um aumento da segurança rodoviária. Embora o surgimento de aplicações úteis tenha permitido que o AV resolvesse uma série de problemas de trânsito, concorda-se que a interação humana a longo prazo será necessária em certas situações de trânsito, na manutenção de veículos e quando o modo de condução autônoma não puder ser utilizado.

Para saber mais sobre o mercado de veículos autônomos, acesse o link abaixo

De acordo com o período de previsão de 2022 a 2029, o mercado semiautônomo e autônomo deverá experimentar um crescimento significativo, com uma taxa projetada de 3,8%. O relatório da Data Bridge Market Research oferece análises abrangentes e insights sobre o mercado, destacando os fatores que deverão ter uma influência proeminente em seu crescimento durante este período.

Na versão completa do relatório, a Data Bridge fornecerá o tamanho do mercado em termos de valor (US$ milhões) ou personalizará conforme as necessidades do cliente


A DBMR atendeu mais de 40% das empresas Fortune 500 internacionalmente e possui uma rede de mais de 5.000 clientes. Nossa equipe terá prazer em ajudá-lo com suas dúvidas. Visita, https://www.databridgemarketresearch.com/pt/contact

Contate-nos

SABER MAIS

Informações adicionais sobre impacto e ações