Visão geral
O termo "IA generativa em robótica" descreve o uso de métodos generativos de inteligência artificial no projeto, otimização e controle de sistemas robóticos. Exemplos desses métodos incluem redes adversárias generativas (GANs), autoencoders variacionais (VAEs) e outros modelos de aprendizagem profunda. Esses métodos proporcionam aos robôs a capacidade de aprender com os dados, apresentar novas ideias e se ajustar às mudanças do ambiente, o que aumenta sua adaptabilidade e eficiência.
A robótica e a IA generativa juntas têm um enorme potencial para mudar o que os robôs podem realizar. Pode melhorar a autonomia do robô, imitar a criatividade humana e permitir a aprendizagem adaptativa e não supervisionada, fundindo técnicas generativas de IA com robótica. O assunto da inteligência artificial generativa em robótica está sempre mudando devido ao estudo contínuo e ao desenvolvimento da tecnologia. Existem muitos usos possíveis, como na área de saúde, manufatura, panificação e instituições financeiras. A influência será sentida na satisfação do cliente e na eficácia operacional. Trabalhando em conjunto, o governo, as instituições académicas e as empresas podem garantir que os padrões éticos e os quadros jurídicos acompanham o desenvolvimento da IA generativa, resultando na sua aplicação responsável e vantajosa.
Figura 1: Robótica generativa de IA
Tipos de métodos generativos de IA usados em robótica
- Redes Adversariais Gerativas (GANs): Uma abordagem de treinamento adversário é usada para treinar as redes neurais geradoras e discriminadoras em conjunto. Enquanto o discriminador aprende a discernir entre amostras genuínas e produzidas, o gerador aprende a produzir amostras de dados realistas. GANs podem ser utilizados em robótica para produzir dados realistas de sensores, estratégias de controle e outros componentes do sistema
- Autoencodificadores Variacionais (VAEs): VAEs são uma classe de modelos generativos que podem ser treinados para codificar e decodificar dados em diferentes espaços de dados, cada um com uma dimensão inferior. VAEs têm o potencial de melhorar o aprendizado e a otimização em robótica, aprendendo representações compactas de dados de sensores, estratégias de controle e outros recursos de sistemas robóticos
- Aprendizagem por Reforço (RL): É uma espécie de aprendizado de máquina em que um agente adquire habilidades de tomada de decisão por meio da interação com o ambiente e do feedback na forma de recompensas ou penalidades. Para aprender políticas de controle, planejamento de caminhos e outras tarefas de tomada de decisão em robótica, abordagens generativas de IA podem ser integradas ao aprendizado por reforço
- Métodos Evolutivos (EAs): A seleção natural serve de inspiração para esta classe de métodos de otimização. Ao melhorar iterativamente soluções potenciais ao longo de várias gerações, algoritmos evolutivos (EAs) em robótica podem ser utilizados para otimizar o projeto de componentes robóticos, estratégias de controle e outros aspectos de sistemas robóticos
Figura 2: Benefícios da Robótica de IA Generativa
Desafios enfrentados durante a adoção de robôs generativos de IA
Considerações e obstáculos abundam ao integrar IA generativa com robôs. Para garantir a aplicação adequada e eficiente da IA generativa na robótica, as questões de implantação, as restrições tecnológicas e as considerações éticas devem ser cuidadosamente consideradas.
- Dificuldades com integração e implantação: Pode ser um desafio incorporar IA generativa nos sistemas robóticos atuais. Ele precisa funcionar com vários tipos de hardware e software e se integrar perfeitamente a toda a arquitetura do sistema. Além disso, surgem problemas com capacidade de processamento, consumo de energia e tomada de decisões em tempo real quando modelos generativos de IA são implementados em robôs em ambientes práticos. Além disso, a incorporação de IA generativa na robótica levanta questões relativas à comunicação e cooperação humano-robô. É necessário planejamento e reflexão significativos para garantir que os robôs possam interagir e trabalhar com as pessoas de maneira segura e confiável.
- Incertezas e restrições técnicas: Embora a IA generativa tenha muito potencial, ainda existem algumas questões sem resposta e restrições técnicas. A capacidade de produzir trabalhos genuinamente originais e inovadores é uma dessas dificuldades. Embora os modelos generativos de IA possam fornecer resultados notáveis, frequentemente dependem de padrões e instâncias de dados pré-existentes. A busca de criatividade e inovação genuínas continua a ser um problema de pesquisa. Além disso, existem dúvidas sobre a fiabilidade e resiliência dos modelos generativos de IA. Uma preocupação importante são os ataques adversários, nos quais agentes malévolos controlam sistemas de IA. São necessários investigação e desenvolvimento constantes para garantir a segurança e a integridade da IA generativa na robótica, que é uma característica crucial
- Escalabilidade: Pode ser um desafio dimensionar modelos generativos de IA para sistemas robóticos de grande escala ou aplicações em tempo real devido aos seus altos custos de computação
- Requisitos de dados: Para certas aplicações robóticas, obter os grandes volumes de dados necessários para que os algoritmos de IA generativos possam treinar adequadamente pode ser um desafio
- Implicações para a Ética: Existem preocupações éticas significativas com o uso de IA generativa em robótica. É cada vez mais importante garantir que as decisões tomadas por robôs cada vez mais autónomos e sofisticados cumpram normas e valores morais. É importante lidar adequadamente com questões como responsabilidade, privacidade e preconceito para evitar quaisquer repercussões indesejadas ou danos potenciais. Trabalhando juntos, desenvolvedores, acadêmicos e políticos devem criar padrões morais para a criação e aplicação de IA generativa em robótica
Esses desafios podem ser superados e podem até criar aplicações robóticas éticas e significativas de IA generativa, participando ativamente em pesquisas e trabalhando em conjunto com diferentes empresas associadas, tomando diferentes decisões estratégicas, como parceria, colaboração, fusão e aquisição.
Principais aplicações de IA generativa no campo da robótica
- Projeto de Robótica: Ao produzir configurações inovadoras que equilibram custo e desempenho, abordagens generativas de IA podem ser aplicadas para otimizar o design de peças robóticas, incluindo articulações, atuadores e membros. Sistemas robóticos robustos e mais eficientes podem resultar disso
- Planejamento e Controle do Movimento do Robô: Ramificações significativas da IA generativa também se estendem ao planejamento e controle de movimentos de robôs. Os robôs podem criar planos de movimento otimizados para eficiência e segurança porque podem aprender com grandes conjuntos de dados. Os robôs podem criar uma variedade de trajetórias de movimento realistas, utilizando algoritmos generativos, que os ajudam a navegar com precisão em ambientes desafiadores. Isto é especialmente útil para aplicações, nomeadamente logística e automação de armazéns, onde os robôs devem manobrar através de áreas lotadas e comunicar com pessoas e outros objetos.
- Colaboração e interação humano-robô: Com o uso de IA generativa, a interação e a colaboração homem-robô poderiam ser melhoradas, levando a robôs mais inteligentes e navegáveis por humanos. Os robôs podem ser treinados para produzir comportamentos genuínos e semelhantes aos humanos através da utilização de abordagens generativas de IA, o que permitirá uma comunicação e cooperação suaves com as pessoas. Por exemplo, chatbots e assistentes virtuais que podem conversar naturalmente com os usuários e oferecer ajuda e suporte personalizados podem ser criados usando IA generativa
Para além destas utilizações, a IA generativa tem potencial para revolucionar uma série de outros setores, incluindo a indústria, a saúde, as finanças e a educação. Os robôs podem agora ser capazes de realizar trabalhos difíceis, ajustar-se a ambientes em mudança e interagir com as pessoas de forma mais significativa devido aos desenvolvimentos e avanços na IA generativa.
- Teste e Simulação: Antes de implantar seus projetos, os engenheiros podem testá-los e aprimorá-los usando simulações realistas de sistemas robóticos e suas configurações, que são produzidas usando modelos generativos de IA. Isso pode reduzir o tempo e os custos de desenvolvimento, ao mesmo tempo que aumenta a confiabilidade dos sistemas robóticos. Algoritmos generativos podem entrar nos sistemas que direcionam os movimentos de um robô. Dobb-E, um robô que aprende tarefas por meio de vídeos do iPhone, é um dos primeiros exemplos
- Sensoriamento e Percepção Robótica: A robótica depende fortemente da IA generativa para melhorar suas capacidades de percepção e detecção. Através do uso de modelagem generativa e redes adversárias generativas (GANs), os robôs podem ser treinados para produzir dados artificiais que replicam entradas de sensores do mundo real. Os robôs podem obter uma melhor compreensão do ambiente ao seu redor usando esses dados artificiais para treinar e aprimorar algoritmos de percepção. Por exemplo, a IA generativa pode ajudar a melhorar a precisão dos sistemas de deteção e reconhecimento de objetos em carros autónomos, aumentando a sua fiabilidade e segurança.
O mercado global de chatbots está testemunhando um crescimento substancial nos últimos anos devido à crescente necessidade de chatbots baseados em IA para fornecer uma experiência aprimorada ao cliente. Além disso, o aumento da utilização de IA generativa em robôs e as iniciativas crescentes para construir robôs de autoaprendizagem para experiências de conversação semelhantes às humanas são outros fatores que tendem a aumentar o crescimento nos próximos anos. De acordo com a análise da Data Bridge Market Research, o mercado global de chatbot deve crescer a uma taxa composta de crescimento anual (CAGR) de 22,10% de 2021-2029.
Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-chatbots-market
A seguir estão os casos em relação à IA generativa no campo da robótica:
- Em fevereiro de 2024, foi revelada a próxima fase da expansão da força de trabalho robótica da Amazon. A empresa afirmou que o novo sistema Sequioa, que conectou robôs de diferentes partes do armazém para formar uma única equipe autônoma, melhorou muito a eficiência operacional. A robótica e a automação têm muito potencial devido à IA generativa. Como resultado, a gigante da tecnologia está atualmente tentando arrecadar dinheiro para uma classe mais avançada de robôs. O fundo de inovação industrial da empresa acelerará os investimentos em robótica e empresas focadas em IA
- Em novembro de 2023, a DeepMind do Google revelou o Open X-Embodiment, um banco de dados de funcionalidades robóticas desenvolvido em parceria com 33 institutos acadêmicos. Os pesquisadores compararam o método com o ImageNet, o banco de dados histórico criado em 2009 e que atualmente abriga mais de 14 milhões de fotos. Mais de 500 talentos e 150.000 atividades foram coletados de 22 encarnações de robôs para criar o Open X-Embodiment. Quando comparada com as técnicas internas, a DeepMind relatou uma taxa de sucesso de 50% ao usar os dados para treinar seu modelo RT-1-X, que depois usou para treinar robôs em outros laboratórios. Sem dúvida, a IA (especialmente a do tipo generativo) e a simulação desempenham um papel importante neste contexto.
- Em outubro de 2023, investigadores do MIT empregaram um modelo de difusão, um tipo de IA generativa, para lidar de forma mais eficaz com problemas de embalagem, incluindo empilhamento de bagagens, colisões entre o pára-choques do carro e o braço robótico, e colocação de objetos mais pesados em cima de produtos mais leves. Um grupo de modelos de aprendizado de máquina, cada um treinado para representar um certo tipo de restrição, é utilizado em sua metodologia. Ao combinar estes modelos, são produzidas soluções globais que consideram todas as restrições simultaneamente para o problema de empacotamento.
Principais tendências em robôs generativos de IA
Figura 3: Últimas tendências em robôs de IA generativos
- Robôs autônomos: Os robôs capazes de realizar tarefas sem supervisão humana contínua são conhecidos como robôs autônomos. Esses robôs navegam e tomam decisões por conta própria usando sensores e algoritmos. Eles estão se tornando cada vez mais importantes em diversos setores, incluindo manufatura e logística, pois melhoram a eficiência e a segurança. Os robôs autônomos são capazes de realizar atividades perigosas ou repetitivas para que as pessoas possam se concentrar em responsabilidades mais complexas. Veículos automatizados e drones são apenas dois exemplos de como a robótica alimentada por IA evoluiu. Avanços adicionais incluem modelos de treinamento de aprendizado de máquina, criação de conteúdo, geração de imagens, descoberta de medicamentos, ferramentas de geração de música, geração de código, aplicativos multimodais de inteligência artificial, redes de publicidade generativas e muito mais.
- Gêmeo Digital: Uma tendência altamente valiosa no campo da robótica e da IA generativa é a tecnologia de gêmeos digitais. Uma réplica virtual ou simulação de um objeto ou sistema real é chamada de gêmeo digital. Refere-se ao processo de desenvolvimento de uma contraparte digital no campo da robótica que imita as características, interações e comportamento de um robô real. O desenvolvimento de gêmeos digitais sofisticados requer o uso de IA generativa, que simula dinamicamente cenários do mundo real e pode se adaptar a ambientes em mudança. Esta tecnologia permite que engenheiros e desenvolvedores otimizem digitalmente e solucionem problemas de sistemas robóticos antes de serem implementados, o que resulta em processos de design mais eficientes, custos de desenvolvimento mais baixos e melhor desempenho geral dos dispositivos robóticos. A combinação de IA generativa e gêmeos digitais está revolucionando a indústria robótica, melhorando a precisão, adaptabilidade e confiabilidade em diversas aplicações
- Desenvolvimento em PNL: Os avanços da PNL envolvem o fortalecimento da compreensão e resposta das máquinas à linguagem humana. Esta tecnologia afeta muitas aplicações, como chatbots, assistentes virtuais e ferramentas de tradução de idiomas, permitindo uma comunicação perfeita entre humanos e máquinas. Além disso, o processamento aprimorado de linguagem natural (PNL) permite que as máquinas compreendam o contexto, o sentimento e as nuances da linguagem, promovendo assim a cooperação homem-máquina. Além disso, esta tendência não só melhora a experiência do utilizador, mas também promove a criação de sistemas sofisticados de IA que podem interpretar e gerar texto semelhante ao humano, aproximando-nos da comunicação natural entre homem e máquina. Além disso, os avanços no processamento de linguagem natural (PNL) estão a melhorar a forma como os computadores compreendem e interagem com a linguagem ou inteligência humana, resultando em sistemas alimentados por IA mais intuitivos e fáceis de utilizar através da criação de imagens realistas.
- Discurso Sintetizado: Uma tendência popular na robótica generativa de IA é a síntese de fala, que visa fornecer vozes realistas e com som natural para robôs. Uma tecnologia como esta permite que as máquinas interajam com as pessoas de forma eficaz, melhorando a experiência do utilizador e permitindo a interação homem-robô. O processamento avançado de linguagem natural e técnicas de aprendizagem profunda permitem que os robôs compreendam a linguagem falada e produzam respostas expressivas e ricas em entonação. Como resultado, as interações se tornam mais interessantes e relacionáveis. Esta tendência tem uma vasta gama de aplicações, desde robôs personalizados até acompanhantes de idosos, onde a comunicação clara e expressiva é essencial para estabelecer relacionamento e confiança.
- Geração tridimensional (3D): Progressos significativos em IA estão sendo feitos no campo da geração 3D por meio da robótica. Isso envolve o emprego de inteligência artificial para criar modelos ou ambientes virtuais tridimensionais. Esses modelos podem ser aplicados a diversas tarefas, incluindo projeto de estruturas complexas, melhoria de experiências de realidade virtual e modelagem de cenários realistas para treinamento de sistemas robóticos. Campos avançados como design auxiliado por computador, simulação e prototipagem virtual se beneficiaram do desenvolvimento de algoritmos generativos, que facilitam a criação de materiais 3D realistas e intrincados. Esta tecnologia auxilia no desenvolvimento e teste de sistemas robóticos em um espaço digital mais realista e imersivo, facilitando uma melhor compreensão e visualização de dados espaciais complexos.
O mercado global de robôs autônomos testemunhou um crescimento substancial devido à crescente demanda por automação de armazéns e entrega rápida de última milha. De acordo com a análise da Data Bridge Market Research, o mercado global de robôs autônomos deverá crescer a uma taxa composta de crescimento anual (CAGR) de 19,70% de 2022-2030.
Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-autonomous-robot-market
Próximas perspectivas de robôs de IA generativos
Oportunidades emocionantes estão por vir para a IA generativa em robótica. Desenvolvimentos e avanços nesta área estão abrindo as portas para aplicações revolucionárias em diversos setores.
- Possíveis efeitos em diferentes setores Prevê-se que a IA generativa em robôs teria um impacto significativo em inúmeras indústrias. Por exemplo, a IA generativa na área da saúde pode ajudar com imagens médicas, criando imagens artificiais que podem ajudar no diagnóstico e no planeamento terapêutico. Através da criação de soluções novas e criativas, a IA generativa pode otimizar as operações e o design na indústria transformadora. A IA generativa pode ser usada no entretenimento para produzir experiências interativas e personalizadas.
- Inovações e avanços tecnológicos: O assunto da inteligência artificial generativa em robótica está sempre mudando devido ao estudo contínuo e ao desenvolvimento da tecnologia. A fim de melhorar as capacidades dos modelos generativos de IA, os investigadores estão a investigar novas abordagens e métodos. Desenvolvimentos em aprendizagem profunda generativa, redes adversárias generativas (GANs) e modelagem generativa estão incluídos nisso.
Modelos de IA generativos mais complexos e realistas estão provavelmente em desenvolvimento como resultado destes desenvolvimentos. Como resultado, os robôs serão capazes de produzir trabalhos mais complexos e imaginativos, o que aumentará sua eficiência e versatilidade. Além disso, os algoritmos generativos ajudarão os sistemas robóticos a se tornarem mais hábeis na tomada de decisões e na resolução de problemas.
- Oportunidades de colaboração entre diferentes empresas e órgãos governamentais: À medida que a IA generativa na robótica se desenvolve, o trabalho em equipa será essencial para promover a criatividade e alcançar todo o potencial desta tecnologia. As organizações podem assumir tarefas desafiadoras e ampliar os limites da IA generativa, colaborando com pesquisadores e especialistas no assunto na área. A colaboração também pode assumir a forma de alianças intersetoriais, nas quais representantes de muitas áreas se unem para investigar as aplicações potenciais da IA generativa na robótica. Esta abordagem interdisciplinar, que combina conhecimentos de diversas áreas, pode estimular a inovação e novas ideias.
A IA generativa global no mercado de saúde testemunhou um crescimento significativo nos últimos anos devido a vários fatores, como o aumento da colaboração entre diferentes empresas, o crescente avanço tecnológico, o aumento do foco no aprimoramento de imagens médicas e muito mais. De acordo com a análise da Data Bridge Market Research, o mercado global de IA generativa no mercado de saúde deverá crescer a uma taxa composta de crescimento anual (CAGR) de 32,60% de 2023-2031.
Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-generative-ai-in-healthcare-market
Abaixo estão alguns casos relacionados às futuras oportunidades para IA generativa em robôs:
- Em março de 2024, a Nvidia Corporation desenvolveu uma plataforma de hardware e software com recursos generativos de IA para a criação de robôs que se assemelham a humanos. A nova plataforma compreenderá um sistema de computador que alimentará o robô e a inteligência artificial (IA), juntamente com um conjunto de ferramentas de software, como a genAI, para permitir a criação de robôs semelhantes à vida humana. Os robôs humanóides serão capazes de agir com base em entradas usando uma combinação de linguagem, vídeo, “demonstações humanas” e experiências anteriores devido à incorporação de genAI
- Em março de 2024, Amazon Web Services (AWS) e Nvidia Corporation anunciaram que a AWS fornecerá em breve a nova plataforma de GPU NVIDIA Blackwell, que a NVIDIA revelou no GTC 2024. Para ajudar os clientes a desbloquear novos recursos generativos de inteligência artificial (IA), a AWS irá agora oferecem o NVIDIA GB200 Grace Blackwell Superchip e as GPUs B100 Tensor Core, expandindo sua colaboração estratégica de longa data. Juntas, as empresas fornecerão a infraestrutura, o software e os serviços mais avançados e seguros
- Em janeiro de 2024, a Nvidia Corporation e seus parceiros Boston Dynamics, Sanctuary AI, Covariant, Unitree Robotics, Collaborative Robotics e outros apresentaram suas parcerias e invenções mais recentes para reunir IA generativa e robótica na CES 2024 em Las Vegas. Uma série de tecnologias de ponta foram apresentadas pela sua lista de parceiros automotivos, demonstrando o potencial revolucionário da IA na engenharia, desempenho e design de veículos. A indústria automobilística está vendo uma rápida adoção da IA generativa e da computação definida por software, o que está alimentando avanços que deverão transformar completamente a direção no próximo ano
Conclusão
Até 2024, o campo da robótica de inteligência artificial geneticamente modificada terá avançado significativamente e revolucionará as indústrias mais rapidamente do que no passado. A robótica e a inteligência artificial combinadas abriram um amplo leque de oportunidades, revolucionando a vida quotidiana e a indústria. À medida que atravessamos o cenário em desenvolvimento da Robótica de IA Generativa. Há provas de que a cooperação entre a inteligência artificial e a robótica está a criar um mundo onde máquinas inteligentes coexistem com pessoas, fornecendo soluções criativas e melhorando as experiências quotidianas.