Visão geral
Atualmente, é prática comum criptografar dados quando eles são armazenados ou transmitidos, mas a criptografia dos dados em uso, especificamente na memória, é muitas vezes negligenciada. Além disso, a infraestrutura de computação convencional carece de mecanismos robustos para salvaguardar dados e códigos durante a sua utilização ativa. Isto representa um desafio para as organizações que lidam com informações sensíveis, como informações de identificação pessoal (PII), dados financeiros ou registos de saúde, uma vez que devem enfrentar ameaças potenciais que podem comprometer a confidencialidade e a integridade da aplicação e dos dados residentes na memória do sistema. A computação confidencial protege os dados em uso, realizando a computação em um ambiente de execução confiável atestado e baseado em hardware. Ao estabelecer ambientes seguros e isolados, as organizações podem efetivamente melhorar a segurança das suas operações que envolvem dados sensíveis e regulamentados. Esses ambientes controlados garantem que sejam evitados acessos não autorizados ou alterações em aplicativos e dados durante seu uso ativo. Como resultado, a postura geral de segurança destas organizações é significativamente elevada.
Introdução
A computação abrange três estados distintos para dados: durante o trânsito, em repouso e em uso. Quando os dados estão se movendo ativamente através de uma rede, eles são considerados “em trânsito”. Os dados armazenados e não acessados ativamente são chamados de "em repouso". Por último, os dados processados ou utilizados são categorizados como “em uso”. Na nossa era moderna, onde o armazenamento, o consumo e a partilha de dados sensíveis se tornaram comuns, a salvaguarda desses dados em todos os seus estados tornou-se cada vez mais crucial. Isso se refere a uma ampla gama de informações confidenciais, incluindo dados de cartão de crédito, registros médicos, configurações de firewall e até dados de geolocalização. A criptografia agora é comumente implantada para fornecer confidencialidade de dados (interrompendo a visualização não autorizada) e integridade de dados (prevenindo ou detectando alterações não autorizadas). Embora as técnicas para proteger os dados em trânsito e em repouso sejam agora comummente implementadas, o terceiro estado – proteger os dados em utilização – é a nova fronteira.
Riscos de segurança para dados desprotegidos “em uso”
À medida que os vetores de ameaças contra dispositivos de rede e de armazenamento são cada vez mais frustrados pelas proteções que se aplicam aos dados em trânsito e em repouso, os invasores passaram a ter como alvo os dados em uso. A indústria testemunhou vários ataques de memória de alto perfil, como a violação do Target, e ataques de canal lateral da CPU que aumentaram drasticamente a atenção a esse terceiro estado, bem como vários ataques de alto perfil envolvendo injeção de malware, como o ataque Triton e o ataque à rede eléctrica da Ucrânia.
A proteção avançada contra malware é um tipo de solução de proteção e análise de malware altamente desenvolvida, de classe empresarial, alimentada por inteligência. Ele também oferece às equipes de segurança o nível de visibilidade e controle profundos necessários para detectar rapidamente ataques, cooperar e controlar malware antes que ele cause danos. De acordo com a análise realizada pela Data Bridge Market Research, o tamanho do mercado de proteção avançada contra malware está avaliado em US$ 8.901,17 milhões até 2028 e deverá crescer a uma taxa composta de crescimento anual de 14,30% no período de previsão de 2021 a 2028. Data Bridge Market Research O relatório sobre proteção avançada contra malware fornece análises e insights sobre os diversos fatores que deverão prevalecer ao longo do período previsto, ao mesmo tempo que fornece seus impactos no crescimento do mercado.
https://www.databridgemarketresearch.com/pt/reports/global-advanced-malware-protection-market
À medida que a quantidade de dados armazenados e processados em dispositivos móveis, de borda e de IoT continua a crescer, garantir a segurança dos dados e dos aplicativos durante a execução se torna mais crítico. Esses dispositivos geralmente operam em ambientes remotos e desafiadores, dificultando a manutenção de sua segurança. Além disso, considerando a natureza pessoal das informações armazenadas em dispositivos móveis, os fabricantes e fornecedores de sistemas operacionais móveis devem demonstrar que os dados pessoais estão protegidos e permanecem inacessíveis aos fornecedores de dispositivos e terceiros durante o compartilhamento e o processamento. Essas proteções devem cumprir os requisitos regulamentares. Mesmo em situações em que você tem controle sobre sua infraestrutura, proteger seus dados mais confidenciais enquanto eles estão sendo usados é um componente essencial de uma estratégia robusta de defesa em profundidade.
A Computação Confidencial aproveita Ambientes de Execução Confiáveis (TEEs) baseados em hardware para proteger os dados durante seu uso ativo. Ao adotar a Computação Confidencial, podemos mitigar com eficácia muitas das ameaças discutidas anteriormente. Um Trusted Execution Environment (TEE) é um ambiente que garante um alto nível de garantia em termos de integridade de dados, confidencialidade de dados e integridade de código. Utilizando técnicas baseadas em hardware, um TEE fornece garantias de segurança aprimoradas para execução de código e proteção de dados no ambiente.
No contexto da computação confidencial, as entidades não autorizadas abrangem outras aplicações no host, o sistema operacional host, o hipervisor, os administradores do sistema, os provedores de serviços e o proprietário da infraestrutura, juntamente com qualquer pessoa que tenha acesso físico ao hardware. A confidencialidade dos dados garante que essas entidades não autorizadas não consigam acessar os dados enquanto eles estão sendo utilizados no Trusted Execution Environment (TEE). A integridade dos dados protege contra alterações não autorizadas dos dados durante o processamento por entidades externas ao TEE. A integridade do código garante que entidades não autorizadas não possam substituir ou modificar o código dentro do TEE. Coletivamente, esses atributos não apenas garantem a confidencialidade dos dados, mas também garantem a correção dos cálculos, inspirando confiança nos resultados dos cálculos. Este nível de garantia está frequentemente ausente em abordagens que não utilizam um TEE baseado em hardware.
A tabela a seguir compara uma implementação TEE típica com implementações típicas de duas outras classes emergentes de solução que protegem os dados em uso, criptografia homomórfica (HE) e módulos de plataforma confiáveis (TPM).
Tabela 1 – comparação das propriedades de segurança da Computação Confidencial vs. HE e TPMs
|
TEE HW
|
Criptografia Homomórfica
|
TPM
|
Integridade de dados
|
E
|
Y (sujeito à integridade do código)
|
Somente chaves
|
Confidencialidade de dados
|
E
|
E
|
Somente chaves
|
Integridade do código
|
E
|
Não
|
E
|
Confidencialidade do Código
|
Y (pode exigir trabalho)
|
Não
|
E
|
Lançamento autenticado
|
Varia
|
Não
|
Não
|
Programabilidade
|
E
|
Parcial (“circuitos”)
|
Não
|
Atestabilidade
|
E
|
Não
|
E
|
Recuperabilidade
|
E
|
Não
|
E
|
Ambientes de execução confiáveis (TEEs)
De acordo com o CCC (seguindo as práticas comuns da indústria), um Ambiente de Execução Confiável (TEE) é caracterizado por três propriedades essenciais, que são as seguintes:
Fig - Características do Ambiente de Execução Confiável (TEE)
Entidades não autorizadas abrangem vários atores, como outros aplicativos no host, o sistema operacional e hipervisor do host, administradores de sistema, provedores de serviços, o proprietário da infraestrutura ou qualquer outra pessoa que acesse fisicamente o hardware. Essas propriedades garantem coletivamente a confidencialidade dos dados e a precisão dos cálculos realizados no TEE, inspirando assim confiança nos resultados dos cálculos.
Além disso, dependendo da implementação específica do TEE, ele pode oferecer recursos adicionais, incluindo:
Os TEEs baseados em hardware aproveitam técnicas apoiadas por hardware para fornecer maiores garantias de segurança para execução de código e proteção de dados dentro do TEE. Este nível de garantia está frequentemente ausente em abordagens que não dependem de um TEE baseado em hardware.
Benefícios da computação confidencial
A computação confidencial oferece inúmeras vantagens para organizações preocupadas com a privacidade e segurança dos dados.
Fig - Benefícios da Computação Confidencial
Implementando Computação Confidencial
A implementação da computação confidencial requer planejamento e consideração cuidadosos.
A tabela a seguir mostra como a escalabilidade em várias métricas se compara entre a computação clássica, a computação usando um TEE típico baseado em hardware e a criptografia homomórfica. Tal como acontece com a comparação de segurança, as respostas reais podem variar de acordo com fornecedor, modelo ou algoritmo.
Tabela 2 - Comparação das propriedades de escalabilidade da Computação Confidencial vs. HE e TPMs
Propriedades
|
Nativo
|
TEE HW
|
Criptografia Homomórfica
|
Limites de tamanho de dados
|
Alto
|
Médio
|
Baixo
|
Velocidade de computação
|
Alto
|
Alto-médio
|
Baixo
|
Escalabilidade horizontal entre máquinas
|
Sim
|
Mais trabalho
|
Sim
|
Capacidade de combinar dados entre conjuntos (MPC)
|
Sim
|
Sim
|
Muito limitado
|
Desafios na implementação
Embora a computação confidencial traga benefícios significativos, as organizações devem enfrentar vários desafios ao implementá-la.
Estratégias principais
Intel anuncia novas iniciativas de computação confidencial. A Intel anunciou uma série de novas iniciativas de computação confidencial em 25 de janeiro de 2023. Essas iniciativas incluem:
Google anuncia plataforma de nuvem confidencial. O Google anunciou a disponibilidade geral de sua Confidential Cloud Platform em 1º de fevereiro de 2023. A Confidential Cloud Platform é um conjunto de serviços que ajuda as organizações a proteger dados confidenciais na nuvem. Esses serviços incluem:
Microsoft anuncia computação confidencial para Azure. A Microsoft anunciou que está trazendo a computação confidencial para o Azure em 3 de fevereiro de 2023. A computação confidencial para Azure é um conjunto de serviços que ajuda as organizações a proteger dados confidenciais na nuvem. Esses serviços incluem:
Estes são alguns exemplos de iniciativas estratégicas importantes anunciadas recentemente relacionadas à computação confidencial. Essas iniciativas foram projetadas para ajudar as organizações a adotarem tecnologias de computação confidenciais e protegerem dados confidenciais na nuvem.
Casos de uso do mundo real
A computação confidencial encontra aplicações práticas em vários setores, permitindo que as organizações protejam dados confidenciais e garantam a privacidade.
Fig - Casos de uso do mundo real
Armazenamento e processamento de chaves, segredos, credenciais e tokens:
Chaves criptográficas, segredos, credenciais e tokens são as “chaves do reino” para organizações responsáveis pela proteção de dados confidenciais. Tradicionalmente, os módulos de segurança de hardware (HSMs) locais eram usados para cumprir os padrões de segurança e garantir a segurança desses ativos. No entanto, a natureza proprietária dos HSMs tradicionais limitou a sua escalabilidade e compatibilidade com ambientes de computação em nuvem e de ponta, resultando em aumento de custos e desafios de implantação. A computação confidencial aborda essas limitações utilizando infraestrutura de computação padronizada disponível no local, em nuvens públicas/híbridas e até mesmo na borda da rede para casos de uso de IoT. Fornecedores independentes de software (ISVs) e grandes organizações já adotaram a computação confidencial para armazenar e processar com segurança informações criptográficas e secretas. Os principais aplicativos de gerenciamento aproveitam ambientes de execução confiáveis (TEEs) baseados em hardware para armazenar e processar esses ativos, garantindo a confidencialidade dos dados, a integridade e a integridade do código. A segurança alcançada através da computação confidencial é comparável aos HSMs tradicionais, proporcionando uma solução mais escalável e económica para armazenar e processar informações sensíveis.
Casos de uso de nuvem pública:
Em ambientes tradicionais de nuvem pública, a confiança é depositada em diversas camadas da infraestrutura do provedor de nuvem. A Computação Confidencial introduz garantias de proteção adicionais, reduzindo o número de camadas nas quais os usuários finais precisam confiar. Com Ambientes de Execução Confiáveis (TEEs) baseados em hardware protegendo aplicativos e dados em uso, atores não autorizados, mesmo com acesso físico ou privilegiado, enfrentam desafios significativos no acesso a códigos e dados de aplicativos protegidos. A Computação Confidencial visa remover o provedor de nuvem da Base de Computação Confiável, permitindo que cargas de trabalho que antes eram limitadas por questões de segurança ou requisitos de conformidade sejam migradas com segurança para a nuvem pública.
Computação multipartidária
À medida que surgem novos paradigmas de computação para permitir o compartilhamento de dados e poder de processamento entre várias partes, garantir a confidencialidade e a integridade de dados confidenciais ou regulamentados torna-se crucial. A Computação Confidencial fornece uma solução para que as organizações compartilhem e analisem dados com segurança, sem comprometer sua privacidade, mesmo em plataformas não confiáveis. A análise privada multipartidária pode ser aplicada em vários domínios, como serviços financeiros, saúde e governo, para combinar e analisar dados privados sem expor dados subjacentes ou modelos de aprendizado de máquina. Com a Computação Confidencial, os dados permanecem protegidos contra adulterações e comprometimentos, até mesmo contra ameaças internas, garantindo colaboração segura e liberando o potencial de compartilhamento global de dados, ao mesmo tempo que mitigam riscos de segurança, privacidade e regulatórios.
Blockchain
Blockchains fornecem um livro-razão imutável para registrar e validar transações sem a necessidade de uma autoridade centralizada. Embora ofereçam transparência e consistência de dados, o armazenamento de dados confidenciais no blockchain imutável apresenta preocupações de privacidade. A Computação Confidencial pode aprimorar as implementações de blockchain, aproveitando Ambientes de Execução Confiáveis (TEEs) baseados em hardware. Os TEEs permitem que os usuários executem contratos inteligentes com segurança, garantindo privacidade de dados, escalabilidade e otimização de verificação. Os serviços de atestado baseados em TEE fornecem prova de confiabilidade para transações, eliminando a necessidade de cada participante validar dados históricos de forma independente. Além disso, a computação confidencial aborda ineficiências computacionais e de comunicação associadas a protocolos de consenso em sistemas blockchain.
Dispositivos de computação móvel e pessoal
A computação confidencial em dispositivos clientes oferece casos de uso que fornecem garantias de privacidade e integridade dos dados. Os desenvolvedores de aplicativos e fabricantes de dispositivos podem garantir que os dados pessoais não sejam observáveis durante o compartilhamento ou processamento, isentando a responsabilidade dos fabricantes. Os Ambientes de Execução Confiáveis (TEEs) permitem a verificação formal da correção funcional, permitindo aos desenvolvedores provar que os dados do usuário não saíram do dispositivo. Por exemplo, implementações de autenticação contínua podem operar dentro de um TEE para identificar usuários sem expor dados biométricos ou comportamentais confidenciais. Da mesma forma, o treinamento descentralizado de modelos no dispositivo pode melhorar modelos e compartilhar melhorias sem vazar dados de treinamento, fornecendo políticas e restrições controladas pelo usuário por meio de atestado mútuo em um TEE baseado em hardware.
Casos de uso de Edge e IoT:
A computação confidencial encontra casos de uso valiosos em ambientes de borda e IoT, onde a privacidade e a segurança dos dados são fundamentais. Por exemplo, em cenários como pesquisa local e filtragem em roteadores domésticos para detecção de DDoS, um ambiente de computação confidencial pode proteger o comportamento confidencial do usuário inferido a partir de metadados de pacotes TCP/IP. Outros exemplos incluem processamento de aprendizado de máquina confidencial de ponta, como geração de metadados de vídeo para reduzir a latência, vigilância de câmeras CCTV com modelos de pessoas de interesse e modelos de treinamento no dispositivo. A tecnologia de computação confidencial também ajuda a mitigar ataques que exploram o acesso físico a dispositivos em ambientes onde partes não confiáveis possam ter acessibilidade física.
Uma coleção de registros de dados, um banco de dados tecnológico interligado por meio de criptografia, é chamada de blockchain. Prevê-se que as operações comerciais transfronteiriças em expansão global aumentem a procura pela tecnologia. A Data Bridge Market Research analisa que o mercado de blockchain, avaliado em US$ 10,02 bilhões em 2022, atingirá US$ 766,10 bilhões até 2030, crescendo a um CAGR de 71,96% durante o período previsto de 2023 a 2030. A aceitação das criptomoedas pela lei motiva empresas e investidores para aumentar seus investimentos em tecnologia blockchain. Além disso, prevê-se que a tecnologia blockchain se tornará mais eficaz e eficiente nos esforços das empresas em breve. DeFi é uma nova tecnologia financeira baseada em blockchain que diminui o controle dos bancos sobre os serviços financeiros e o dinheiro. Ao longo do período de projeção, o crescimento do mercado é antecipado pelo aumento de iniciativas estratégicas no espaço financeiro descentralizado.
Tendências e direções futuras
O campo da computação confidencial está evoluindo rapidamente e diversas tendências e direções futuras podem ser identificadas.
Conclusão
A computação confidencial oferece uma abordagem inovadora para proteger dados confidenciais durante o processamento em ambientes não confiáveis. Ao combinar princípios como isolamento de dados, enclaves seguros, atestado, criptografia e minimização de suposições de confiança, as organizações podem garantir a confidencialidade e a integridade de seus dados. Apesar dos desafios relacionados com o desempenho, a gestão de chaves, os sistemas legados e a portabilidade das aplicações, os benefícios da implementação da computação confidencial são substanciais. Casos de uso do mundo real demonstram seu valor em saúde, finanças, computação de ponta e computação em nuvem. Seguindo as melhores práticas e considerando as tendências futuras, as organizações podem adotar a computação confidencial para proteger os seus dados sensíveis e preservar a privacidade num mundo cada vez mais interligado.
A DBMR atendeu mais de 40% das empresas Fortune 500 internacionalmente e possui uma rede de mais de 5.000 clientes. Nossa equipe terá prazer em ajudá-lo com suas dúvidas. Visita, https://www.databridgemarketresearch.com/pt/contact
Contate-nosSegurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line