>Espanha Mercado de aprendizagem automática como serviço, por serviço (serviço gerido, profissional, serviço profissional), função empresarial (recursos humanos, vendas e marketing, finanças e operação), modelo de implementação (cloud, local), tamanho da organização ( grande organização , Pequenas e Médias Organizações), Aplicação (Descoberta de Medicamentos, Detecção de Fraude e Gestão de Riscos, Processamento de Linguagem Natural, Marketing e Publicidade, Segurança e Vigilância, Reconhecimento de Imagens , Análise Preditiva, Data Mining, Realidade Aumentada e Virtual), Utilizador Final (Bancos, Serviços Financeiros e Seguros, TI e Telecomunicações, Investigação e Académico, Governo e Setor Público, Retalho e Comércio Eletrónico, Manufatura, Saúde e Farmacêutica, Viagens e Logística, Energia e Serviços Públicos, Media e Entretenimento) - Tendências do Setor e Previsão para 2029
Análise e dimensão do mercado
As empresas dentro do mercado de aprendizagem automática como serviço concentram-se em setores essenciais como a tecnologia de saúde, BFSI e telecomunicações para determinar fluxos de receitas estáveis após o montante do coronavírus. No entanto, os erros tecnológicos e a falta de profissionais especializados com experiência em aprendizagem automática parecem ser um dos principais fatores limitativos na adoção da aprendizagem automática pelas organizações. Isto pode estar a criar obstáculos na implementação de plataformas de aprendizagem automática como serviço. Além disso, a escassez de segurança do conhecimento devido à escassez de aparelhos impacta negativamente a expansão do mercado. Consequentemente, os participantes do mercado de aprendizagem automática como serviço devem cooperar com o governo e com as organizações restritivas para padronizar o negócio de aprendizagem automática como serviço.
A Data Bridge Market Research analisa que o valor de mercado da aprendizagem automática como serviço, que foi de 5,45 mil milhões de dólares em 2021, deverá atingir o valor de 79,34 mil milhões de dólares até 2029, com um CAGR de 39, 76% durante o período de previsão 2022-2029.
Definição de mercado
A aprendizagem automática é uma tecnologia que fornece aos computadores a capacidade de aprender e alterar funcionalidades fundamentais quando expostos a diferentes conjuntos de dados. a aprendizagem automática tornou-se a ferramenta mais importante para os negócios. Gigantes da tecnologia como a Amazon e a Google estão a gastar muito para aumentar e solidificar a sua base de clientes.
Âmbito do relatório e segmentação de mercado
Métrica de reporte |
Detalhes |
Período de previsão |
2022 a 2029 |
Ano base |
2021 |
Anos históricos |
2020 (personalizável para 2019 - 2014) |
Unidades Quantitativas |
Receita em biliões de dólares, volumes em unidades, preços em dólares |
Segmentos cobertos |
Serviço (serviço gerido, profissional, serviço profissional), função empresarial (recursos humanos, vendas e marketing, finanças e operação), modelo de implementação (cloud, local), tamanho da organização (grande organização, pequena e média organização), aplicação ( Descoberta de medicamentos, deteção de fraudes e gestão de riscos, processamento de linguagem natural, marketing e publicidade, segurança e vigilância, reconhecimento de imagens, análise preditiva, data mining, realidade aumentada e virtual), utilizador final (bancos, serviços financeiros e seguros, TI e telecomunicações). , Investigação e Académico, Governo e Setor Público, Retalho e Comércio Eletrónico, Manufatura, Saúde e Farmacêutica, Viagens e Logística, Energia e Serviços Públicos, Media e Entretenimento) |
Participantes do mercado abrangidos |
Google (EUA), Microsoft (EUA), IBM (EUA), SAP (Alemanha), Amazon Web Services, Inc. |
Oportunidades de mercado |
|
Dinâmica do mercado de aprendizagem automática como serviço em Espanha
Esta secção trata da compreensão dos impulsionadores do mercado, vantagens, oportunidades, restrições e desafios. Tudo isto é discutido em detalhe abaixo:
Motoristas:
- Avanços nas tecnologias
Unidade de área de rápidos avanços e inovações a acontecer nas tecnologias de sanção. numerosos fornecedores de resolução realizam muito trabalho nestas áreas. Por exemplo, a Affectiva lançou recentemente a sua tecnologia de análise de sentimentos que possui o maior repositório de conhecimento de mais de dois milhões de vídeos faciais, sancionando os seus compradores para alcançarem alta precisão com insights incomparáveis. além disso, players alternativos como pequenos players como Cognitec System, Emotient, Gesturetek, Saffron e Palantir estão a criar avanços significativos no campo do reconhecimento de gestos, reconhecimento facial, computação de características psicológicas e análise de células somáticas. Espera-se que esta unidade de área de desenvolvimento alimente a expansão do mercado nos próximos anos.
- Armazenamento e arquivo de dados
Nos algoritmos de aprendizagem profunda, o pacote de armazenamento e arquivo de informação desempenha um papel importante na previsão de soluções para problemas extremamente avançados. Uma vez que um programa algorítmico de aprendizagem profunda lida com uma rede neural sintética composta por muitas camadas, pretende uma enorme quantidade de conjuntos de informação para fornecer o resultado. O programa algorítmico de aprendizagem profunda utiliza o pacote de armazenamento e arquivo de informação para se concentrar nas funções avançadas da rede neural artificial.
- Modelador e Processamento
Over the last decade, machine learning technologies have evolved into “algorithms” developed from numerous fields together with statistics, arithmetic, neurobiology, and computing, creating them commercially viable and computationally sturdy. several applications offered these days like speech recognition, fraud detection, and network improvement use a spread of machine learning techniques supported classification, regression, and estimation to method structured knowledge sets.
- Cloud and Web-Based Application Programming Interface (APIS)
In machine learning rule, demand of information is a vital input parameter. A number of the business verticals like banking and monetary services would like an outsized quantity of information instantly to predict the market behavior. Machine learning algorithms get terribly less time to predict solutions when gathering information from information storage and archiving software package. To beat this quality, machine learning algorithms produce an interface between cloud and therefore the application platform.
Opportunities:
- Increasing investments in the healthcare industry
In the field of medicine, huge information is deployed for computing difficult statistics in huge amounts thus on deliver trends and patterns that square measure crucial for applications within the attention business. Huge information aids physicians in anticipating issues before they occur. The Elsevier Health Analytics cluster has revolutionized patient care in FRG by deploying huge information. The corporate is closely coordinative with health economists, physicians, statisticians, IT specialists and analysts for growing the evidence-driven information on acceptable treatments. This is often managed by huge information in attention and befittingly employed by medical professionals with the assistance of AI. The preparation of huge information in attention has so increased the expansion of Germany’s marketplace for machine learning.
Restrictions/ challenges:
Lack of sure-handed labor to put in machine learning as a service market could be a key issue which will hamper growth of the world machine learning as a service market to an exact extent. In addition, businesses would like skilled services to customise specific functions to implement on their MLaaS platforms. Stringent compliance problems is another issue expected to restrain the target market.
This machine learning as a service market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the machine learning as a service market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
COVID-19 Impact on Machine Learning as a Service Market
The COVID-19 pandemic has expedited the interest for machine learning because the world practices social distancing technologies. Incorporation of machine learning as a service Market ought to be doable through each software system and services relying upon the amount and nature of integration. Utilization of heat cameras and cluster identification frameworks has become typical across air terminals, train stations, and totally different spots of public visit. This has brought machine learning as a service markets beneath the spotlight of thought, which successively is predicted to enhance the target market. In addition, the employment of AI for recognizing the presence of people across confined zones in clinics associated COVID care focuses have a positive impact on the world machine learning as a service market. The calculations used for AI and investigation have improved by a good pursue late that creates a dynamic chance for the players/suppliers operational within the machine learning as a service market.
Spain Machine Learning as a Service Market Scope
The machine learning as a service market is segmented on the basis of service ,business function deployment model , organization size , application , end user .The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Service
- Managed Service
- Professional
- Professional Service
Business Function
- Human Resources
- Sales and Marketing
- Finance, and Operation
Deployment Model
- Cloud
- On Premise
Organization Size
- Large Organization
- Small and Medium Organization
Application
- Drug Discovery
- Fraud Detection and Risk Management
- Natural Language Processing
- Marketing and Advertising
- Security and Surveillance
- Image Recognition
- Predictive Analytics
- Data Mining
- Augmented and Virtual Reality
End User
- Banking and Financial Services
- Insurance
- IT and Telecom
- Research and Academic
- Government and Public Sector
- Retail and Ecommerce
- Manufacturing
- Healthcare and Pharmaceuticals
- Travel and Logistics
- Energy and Utility
- Media and Entertainment
Competitive Landscape and Machine Learning as a Service Market Share Analysis
The machine learning as a Service market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to machine learning as a Service market.
Some of the major players operating in the machine learning as a service market are:
- Google (US),
- Microsoft (US),
- IBM (US),
- SAP (Germany),
- Amazon Web Services, Inc. (US)
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Índice
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.