Global Predictive Maintenance Market
Tamanho do mercado em biliões de dólares
CAGR : %
Período de previsão |
2024 –2031 |
Tamanho do mercado (ano base ) | USD 6.72 Billion |
Tamanho do mercado ( Ano de previsão) | USD 63.09 Billion |
CAGR |
|
Principais participantes do mercado |
|
>Segmentação global do mercado de manutenção preditiva, por componentes (solução, serviços), modo de implantação (cloud, local), dimensão da organização (grandes empresas, pequenas e médias empresas), vertical (fabrico, energia e serviços públicos, transportes, governo , Saúde, Aeroespacial e Defesa, Outros), Stakeholders (MRO, OEM/ODM, Integradores de Tecnologia) – Tendências e Previsões do Setor para 2031.
Análise de mercado de manutenção preditiva
O aumento da utilização de tecnologias novas e emergentes para obter informações valiosas sobre a tomada de decisões contribuiu para o crescimento da indústria. Vários utilizadores finais verticais necessitam cada vez mais de redução de custos e de tempo de inatividade, o que tem estimulado o crescimento do mercado.
Tamanho do mercado de manutenção preditiva
O tamanho global do mercado de manutenção preditiva foi avaliado em 6,72 mil milhões de dólares em 2023 e deverá atingir os 63,09 mil milhões de dólares até 2031, com um CAGR de 32,30% durante o período de previsão de 2024 a 2031.
Âmbito do relatório e segmentação de mercado
Atributos |
Principais insights do mercado de manutenção preditiva |
Segmentação |
|
Países abrangidos |
EUA, Canadá e México na América do Norte, Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, Resto da Europa na Europa, China, Japão, Índia, Coreia do Sul, Singapura, Malásia , Austrália, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico (APAC) na Ásia-Pacífico (APAC), Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África (MEA) como parte do Médio Oriente e África (MEA), Brasil, Argentina e Resto da América do Sul como parte da América do Sul. |
Principais participantes do mercado |
Microsoft (EUA), IBM (EUA), SAP (Alemanha), SAS Institute Inc. (EUA), Software AG (Alemanha), TIBCO Software Inc. (EUA), Hewlett Packard Enterprise Development LP (EUA), Altair Engineering Inc. (EUA),Splunk Inc. (EUA),Oracle (EUA),Google (EUA),Amazon Web Services, Inc. (EUA),General Electric (EUA),Schneider Electric (França),Hitachi, Ltd., PTC ( EUA), RapidMiner, Inc. (EUA), Operational Excellence (OPEX) Group Ltd, (Reino Unido), Dingo (Austrália), Factory5 (Rússia) |
Oportunidades de mercado |
|
Definição de mercado de manutenção preditiva
O sistema de software de manutenção preditiva é empregue para monitorizar o desempenho e a condição de qualquer instrumentação ou máquina enquanto os opera. O sistema de software segue técnicas avançadas de vitimização de instrumentação que permitem que a manutenção da maquinaria seja regular antes que ocorra qualquer falha. O sistema de software de manutenção prognóstica encontrou a sua aplicação em diversos campos, como por exemplo, encontrar desequilíbrios de energia trifásica devido a distorção harmónica, picos de fenómenos elétricos distintos do motor, aquecimento de rolamentos perigosos.
Dinâmica do mercado de manutenção preditiva
Esta secção trata da compreensão dos impulsionadores do mercado, vantagens, oportunidades, restrições e desafios. Tudo isto é discutido em detalhe abaixo:
Motoristas
- Aumento do uso de tecnologias emergentes para obter insights valiosos
Os desenvolvimentos contínuos em big data, comunicação máquina-máquina (M2M) e inteligência artificial criaram novas possibilidades para a divulgação de informação deduzida a partir de meios artificiais. O preconceito da IoT induz uma enorme quantidade de dados de várias fontes, semelhantes como detetores, câmaras e outros preconceitos conectados. Os dados, ainda assim, não fornecem qualquer valor por si só, a não ser que alguém os converta em informação contextual praticável. Os big data e as formas de visualização de dados permitem que os toxicodependentes ganhem uma nova perceção através de processamento em lote e análise offline. A análise de dados em tempo real e a tomada de decisões são frequentemente feitas manualmente; mas para o tornar escalável, é preferível que seja feito automaticamente. A parte principal da tecnologia de IA é sondar grandes volumes de dados produzidos por vários fatores do ecossistema IoT e transfigurar os dados em percetividade significativa. As empresas estão a integrar a IA nos seus modelos lógicos predefinidos para automatizar o processo de interpretação de dados e obter uma perceção em tempo real dos dados gerados a partir destas tendências de IoT. A IA fornece às empresas estruturas e ferramentas para dissecar dados em tempo real e decidir vários casos de utilização para a IoT.
- Aumento do número de indústrias em todo o mundo para induzir maior procura e oferta nas nações emergentes
O crescente número de pequenas e médias empresas em todo o mundo é um dos principais fatores que promovem o crescimento do mercado. In other words, increased number of banking, financial services, and insurance (BFSI), government and public sector, healthcare and life sciences, manufacturing, retail and e-commerce , telecommunication, and IT industries, is directly influencing the growth rate of the mercado.
Oportunidades
- Monitorização de condições em tempo real para auxiliar na tomada de ações imediatas
A operação avançada de ativos é cada vez menos exigida em quase todas as perpendiculares. Os fornecedores de resultados equipados com IA e ML podem recolher e transformar a vasta quantidade de dados relacionados com o cliente em percetividade significativa, uma vez que a IoT gera uma enorme quantidade de dados a partir de preconceitos conectados. A IA pode também ser integrada com a tendência da IoT para optimizar vários aspectos da prestação de serviços, semelhantes à conservação profética e à avaliação da qualidade, sem a necessidade de qualquer intervenção mortal. Os resultados da IoT baseados em IA já foram adotados em diversas diligências, e isso só aumentaria à medida que a tecnologia amadurecesse. Os desenvolvimentos ininterruptos em big data e comunicação M2M permitem a monitorização das condições em tempo real. A informação em tempo real proveniente de detetores, seletores e outros parâmetros de controlo não só prognosticaria falhas embrionárias de ativos, como também ajudaria as empresas a fazer cobertura em tempo real e a tomar medidas imediatas.
Restrições/Desafios
- Falta de mão-de-obra qualificada
São necessários trabalhadores com formação para lidar com os sistemas de software mais avançados para implementar tecnologias e conjuntos de competências de IoT baseados em IA. Por conseguinte, é necessário que os trabalhadores sejam formados sobre como operar sistemas novos e atualizados. Além disso, a diligência é dinâmica na adoção de novas tecnologias; ainda assim, enfrentam um défice de trabalhadores em grande parte professos e completos. À medida que a maioria dos comerciantes globais está a organizar sistemas de conservação proféticos, a procura por um conjunto amplamente professado está a aumentar. As empresas precisam de adquirir coragem em áreas como a cibersegurança , redes e operações. Além disso, procuram utilizar os dados de IoT para prognosticar problemas, evitar falhas, otimizar operações, desenvolver novos produtos, fornecer um corpo docente de análise avançada, que inclui IA e ML. Estas tecnologias desempenhariam um papel crítico na redução global dos custos funcionais. Além disso, com as empresas a integrar a IA na IoT, haveria uma necessidade crescente de brigadas críticas de dados conhecedoras da inteligência funcional para lidar com enormes quantidades de dados gerados a partir do viés da IoT.
- Requisito frequente de manutenção e atualização para manter os sistemas atualizados
As empresas estão a adotar resultados de IoT baseados em IA para uma conservação profética e uma experiência melhorada do cliente. Os comerciantes solicitados devem desenvolver sistemas de conservação profética considerando dois fatores importantes, a conservação videlicet e as atualizações. Um sistema IoT baseado em IA precisa de ser simplificado e mantido de acordo com as mudanças nas condições de negócio para aplicar atualizações tecnológicas. O software também precisa de ser atualizado, à medida que novos fatores são adicionados. O novo sistema deve estar integrado no atual, bem como no novo. Com o aumento do número de sistemas, o custo de conservação também aumenta. Manter e atualizar os sistemas IoT baseados em IA será uma tarefa árdua para as empresas que oferecem resultados sem qualquer interrupção.
Este relatório de mercado de manutenção preditiva fornece detalhes de novos desenvolvimentos recentes, regulamentos comerciais, análise de importação-exportação, análise de produção, otimização da cadeia de valor, quota de mercado, impacto dos participantes do mercado doméstico e localizado, analisa as oportunidades em termos de bolsas de receitas emergentes, alterações no mercado regulamentações, análise estratégica de crescimento de mercado, tamanho de mercado, crescimento de mercado de categoria, nichos de aplicação e domínio, aprovações de produtos, lançamentos de produtos, expansões geográficas, inovações tecnológicas no mercado. Para mais informações sobre o mercado de manutenção preditiva, contacte a Data Bridge Market Research para obter um resumo do analista, a nossa equipa irá ajudá-lo a tomar uma decisão de mercado informada para alcançar o crescimento do mercado.
Impacto do COVID-19 no mercado da manutenção preditiva
A COVID-19 alterou enciclopédicamente a dinâmica das operações comerciais. Embora o surto de COVID-19 tenha lançado luz sobre os pecados nos modelos de negócio em todos os setores verticais, ofereceu várias oportunidades para digitalizar e expandir os seus negócios em todas as regiões, à medida que o abandono e a integração de tecnologias semelhantes como A IA, a análise, a IoT e a blockchain aumentaram no período de bloqueio. Os sectores retalhista e industrial enfrentaram uma queda significativa no desempenho empresarial durante as primeiras escavações e alternadas de 2020. Ainda assim, com a escassez de vacinas e o controlo considerável alcançado sobre a epidemia, prevê-se que estes sectores testemunhem investimentos crescentes ao longo do período previsto, como profético.
Âmbito do mercado de manutenção preditiva
O mercado de manutenção preditiva é segmentado com base na componente, modo de implementação, tamanho da organização, vertical, stakeholders. O crescimento entre estes segmentos irá ajudá-lo a analisar os escassos segmentos de crescimento nas indústrias e fornecer aos utilizadores uma valiosa visão geral do mercado e insights de mercado para os ajudar a tomar decisões estratégicas para identificar as principais aplicações do mercado.
Componente
- Soluções
- Integrado
- Autônomo
- Serviço
- Serviços geridos
- Serviços Profissionais
- Integração de Sistemas
- Suporte e Manutenção
- Consultoria
Integração de Sistemas
- Suporte e Manutenção
- Consultoria
Modo de implantação
- No local
- Nuvem
- Nuvem pública
- Nuvem privada
- Nuvem Híbrida
Tamanho da organização
- Grandes Empresas
- Pequenas e Médias Empresas (PME)
Vertical
- Governo e Defesa
- Fabricação
- Energia e serviços públicos
- Transporte e Logística
- Saúde e Ciências da Vida
Parte interessada
- MRO
- OEM/ODM
- Integradores de tecnologia
Análise Regional do Mercado de Manutenção Preditiva
O mercado de manutenção preditiva é analisado e são fornecidos insights e tendências do tamanho do mercado por país, componente, modo de implementação, tamanho da organização, vertical, partes interessadas, como mencionado acima.
Os países abrangidos no relatório de mercado de manutenção preditiva são os EUA, Canadá e México na América do Norte, Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, Resto da Europa na Europa, China, Japão, Índia , Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico (APAC) na Ásia-Pacífico (APAC), Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel , Resto do Médio Oriente e África (MEA) como parte do Médio Oriente e África (MEA), Brasil, Argentina e Resto da América do Sul como parte da América do Sul.
Prevê-se que a América do Norte detenha a quota de mercado mais importante no mercado de manutenção prognóstica. Os principais fatores que afirmam a expansão do mercado de manutenção prognóstica na América do Norte abrangem os crescentes avanços tecnológicos na região. Prevê-se que a crescente gama de players de manutenção prognóstica em todas as regiões impulsione mais o crescimento do mercado. No entanto, a Ásia-Pacífico apresentará um aumento constante na adopção da manutenção preditiva devido às economias emergentes, ao avanço tecnológico e à necessidade de adoptar as mais recentes inovações tecnológicas para alcançar um rendimento óptimo através da manutenção adequada dos activos.
A secção do país do relatório também fornece fatores individuais de impacto no mercado e alterações na regulamentação do mercado que impactam as tendências atuais e futuras do mercado. Pontos de dados como a análise da cadeia de valor a jusante e a montante, tendências técnicas e análise das cinco forças de Porter, estudos de caso são alguns dos indicadores utilizados para prever o cenário de mercado para países individuais. Além disso, são considerados a presença e disponibilidade de marcas globais e os desafios enfrentados devido à grande ou escassa concorrência de marcas locais e nacionais, o impacto das tarifas nacionais e das rotas comerciais, ao mesmo tempo que se fornece uma análise de previsão dos dados do país.
Participação no mercado de manutenção preditiva
O cenário competitivo do mercado de manutenção preditiva fornece detalhes por concorrente. Os detalhes incluídos são a visão geral da empresa, finanças da empresa, receitas geradas, potencial de mercado, investimento em investigação e desenvolvimento, novas iniciativas de mercado, presença global, localizações e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa , lançamento de produto, largura e amplitude do produto, aplicação domínio. Os dados acima fornecidos estão apenas relacionados com o foco das empresas relacionado com o mercado de manutenção preditiva.
Os líderes de mercado de manutenção preditiva que operam no mercado são:
- Microsoft(EUA)
- IBM(EUA)
- SAP(Alemanha)
- SAS Institute Inc. (EUA)
- Software AG (Alemanha)
- TIBCO Software Inc.(EUA)
- Hewlett Packard Enterprise Development LP (EUA)
- Altair Engineering Inc.
- (EUA)
- Oráculo (EUA)
- Google (EUA)
- Amazon Web Services, Inc.
- General Electric (EUA)
- Schneider Electric (França)
- Hitachi, Ltd. (Japão)
- PTC (EUA)
- RapidMiner, Inc.
- Operational Excellence (OPEX) Group Ltd, (Reino Unido)
- Dingo (Austrália)
- Fábrica5 (Rússia)
Últimos Desenvolvimentos no Mercado da Manutenção Preditiva
- Em julho de 2021, a Schneider Electric lançou o EcoStruxure TriconexTM Safety View, o primeiro software de operação de alarme e bypass com certificação binária de segurança e cibersegurança da assiduity que permite aos condutores ver o estado do bypass que afeta a posição de redução de ameaças no local, bem como as advertências críticas necessárias para operar a fábrica em segurança quando as armadilhas são elevadas
- Em maio de 2021, o SAS Institute lançou a sua plataforma SAS Viya para apoiar a base para dados e sucesso lógico, incorporando novos resultados de operação de dados na sua importante plataforma SASViya nativa.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.