Relatório de análise do tamanho, quota e tendências do mercado global de computação neuromórfica – Visão geral e previsão da indústria até 2032

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista Relatório de amostra grátis Relatório de amostra grátis Consulte antes Comprar Consulte antes  Comprar agora Comprar agora

Relatório de análise do tamanho, quota e tendências do mercado global de computação neuromórfica – Visão geral e previsão da indústria até 2032

  • Semiconductors and Electronics
  • Upcoming Reports
  • Jan 2025
  • Global
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60

Global Neuromorphic Computing Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Chart Image USD 28.30 Billion USD 297.72 Billion 2024 2032
Diagram Período de previsão
2025 –2032
Diagram Tamanho do mercado (ano base )
USD 28.30 Billion
Diagram Tamanho do mercado ( Ano de previsão)
USD 297.72 Billion
Diagram CAGR
%
Diagram Principais participantes do mercado
  • Manequim1
  • Manequim2
  • Manequim3
  • Manequim4
  • Manequim5

Segmentação do mercado global de computação neuromórfica, por oferta (hardware e software), implantação ( computação de ponta e computação em nuvem ), aplicações ( reconhecimento de imagem , processamento de dados, reconhecimento de sinal, detecção de objectos e mineração de dados), utilizador final (aeroespacial e defesa, TI e telecomunicações, médico, automóvel, industrial e outros) - tendências da indústria e previsão para 2032

Mercado da Computação Neuromórfica

Análise de mercado de computação neuromórfica

O mercado da computação neuromórfica está a assistir a um crescimento significativo, impulsionado pelos avanços na inteligência artificial , na aprendizagem automática e pela crescente procura por soluções de computação energeticamente eficientes. A computação neuromórfica imita a estrutura neural e o funcionamento do cérebro humano, permitindo um processamento e uma tomada de decisão mais rápidos, ao mesmo tempo que reduz o consumo de energia. Esta tecnologia encontra aplicações em diversos setores, incluindo aeroespacial, defesa, automóvel, médico e TI, para tarefas como reconhecimento de imagem, processamento de sinal e data mining. Desenvolvimentos recentes, como o lançamento de hardware e software neuromórficos inovadores por empresas como a Intel, a IBM e a Qualcomm, aceleraram o crescimento do mercado. Além disso, as parcerias e colaborações que visam melhorar as capacidades neuromórficas impulsionam ainda mais o mercado. A adoção da computação neuromórfica é motivada pelo seu potencial para revolucionar a computação de ponta e o processamento em tempo real em sistemas complexos. Com investigação e desenvolvimento contínuos, o mercado está preparado para um crescimento exponencial nos próximos anos, transformando a forma como as indústrias abordam as aplicações com utilização intensiva de dados.

Tamanho do mercado de computação neuromórfica

O tamanho do mercado global de computação neuromórfica foi avaliado em 28,30 mil milhões de dólares em 2024 e está projetado para atingir 297,72 mil milhões de dólares até 2032, com um CAGR de 34,20% durante o período previsto de 2025 a 2032. Para além dos insights sobre cenários de mercado, tais como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research incluem também análises aprofundadas de especialistas, produção e capacidade representadas geograficamente pelas empresas, layouts de rede de distribuidores e parceiros, análise detalhada e atualizada das tendências de preços e análise do défice da cadeia de abastecimento e da procura.

Tendências do mercado da computação neuromórfica

Foco na Eficiência Energética”

No meio das crescentes preocupações ambientais, a computação neuromórfica está a tornar-se cada vez mais proeminente pela sua abordagem de eficiência energética para computações complexas. Ao contrário dos sistemas de computação tradicionais, que consomem energia significativa para tarefas como o processamento de dados e as operações de IA, os sistemas neuromórficos imitam a estrutura neural do cérebro humano, permitindo-lhes realizar tarefas complexas com um uso mínimo de energia. Esta característica tornou a tecnologia altamente atrativa para aplicações em setores que priorizam a sustentabilidade, como a saúde, o automóvel e as cidades inteligentes. Ao reduzir o consumo de energia e manter um elevado poder de processamento, a computação neuromórfica alinha-se com as metas globais de sustentabilidade e satisfaz a procura por tecnologias mais verdes. À medida que as organizações procuram soluções inovadoras para reduzir as suas pegadas de carbono, a computação neuromórfica está a emergir como um facilitador essencial de avanços sustentáveis.

Âmbito do Relatório e Segmentação do Mercado de Computação Neuromórfica  

Atributos

Principais insights de mercado da computação neuromórfica

Segmentos abrangidos

  • Oferecendo: Hardware e Software
  • Por implementação: Edge Computing e Cloud Computing
  • Por aplicações: reconhecimento de imagem, processamento de dados, reconhecimento de sinais, deteção de objetos e data mining
  • Por utilizadores finais: aeroespacial e defesa, TI e telecomunicações, médico, automóvel, industrial e outros

Países abrangidos

EUA, Canadá e México na América do Norte, Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, Resto da Europa na Europa, China, Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico (APAC) na Ásia-Pacífico (APAC), Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África (MEA) como parte do Médio Oriente e África (MEA), Brasil, Argentina e Resto da América do Sul como parte da América do Sul

Principais participantes do mercado

Intel Corporation (EUA), IBM (EUA), BrainChip Inc. (Austrália), Qualcomm Technologies, Inc. (EUA), Hewlett Packard Enterprise Development LP (EUA), SAMSUNG (Coreia do Sul), HRL Laboratories, LLC (EUA), General Vision Inc. (EUA), ABR (Singapura), Vicarious (EUA), Numenta (EUA), Aspinity (EUA), BrainCo, Inc. (EUA), Bitbrain Technologies (Espanha), Linux Kernel Organization, Inc. (EUA), NEXTMIND RL (França), Cognixion (Canadá), NeuroPace, Inc. (EUA), MindMaze (Suíça), Innatera Nanosystems BV (Holanda)

Oportunidades de Mercado

  • Crescimento em aplicações de IA e aprendizagem automática
  • Integração em Tecnologia Vestível

Conjuntos de informações de dados de valor acrescentado

Para além dos insights sobre os cenários de mercado, tais como o valor de mercado, a taxa de crescimento, a segmentação, a cobertura geográfica e os principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research incluem também análises aprofundadas de especialistas, produção e capacidade da empresa representada geograficamente, layouts de rede de distribuidores e parceiros, análises detalhadas e atualizadas das tendências de preços e análises de défice da cadeia de abastecimento e da procura.

Definição de Mercado de Computação Neuromórfica

A computação neuromórfica é uma abordagem de ponta à computação que imita a estrutura e a funcionalidade do cérebro humano. Utiliza redes neuronais artificiais e hardware concebido para emular neurónios e sinapses biológicas, permitindo o processamento eficiente e paralelo de dados complexos. Esta tecnologia é particularmente adequada para lidar com tarefas como o reconhecimento de padrões, a tomada de decisões e a aprendizagem com um consumo mínimo de energia, o que a torna ideal para aplicações em inteligência artificial, robótica e computação de ponta. Ao replicar a capacidade do cérebro de processar informação em tempo real, a computação neuromórfica representa um avanço significativo na obtenção de sistemas de computação mais inteligentes e com maior eficiência energética.

Dinâmica de mercado da computação neuromórfica

Motoristas

  • Aumento da adoção em Edge Computing

A crescente procura por processamento de dados em tempo real na ponta impulsionou significativamente a adoção da computação neuromórfica. Ao contrário dos sistemas de computação tradicionais, as arquiteturas neuromórficas destacam-se quando lidam com tarefas como o reconhecimento de imagem, o processamento de fala e a tomada de decisões com maior velocidade e eficiência energética. Esta funcionalidade é particularmente valiosa em aplicações como veículos autónomos, dispositivos IoT e automação industrial, onde o processamento instantâneo de dados é crucial. Ao permitir respostas de baixa latência e reduzir o consumo de energia, a computação neuromórfica está alinhada com a crescente necessidade de soluções de computação de ponta mais rápidas e sustentáveis. À medida que as indústrias priorizam a eficiência e o processamento em tempo real, esta tecnologia está a tornar-se um importante impulsionador do crescimento do mercado.

  • Aumento da procura nos setores automóvel e de saúde

A crescente adoção de sistemas autónomos, como carros autónomos e dispositivos médicos inteligentes, impulsionou significativamente a procura por computação neuromórfica. A capacidade da tecnologia de processar dados complexos em tempo real, com um consumo mínimo de energia, é ideal para aplicações autónomas onde a tomada de decisões e a adaptabilidade são essenciais. Os sistemas neuromórficos permitem que os veículos respondam a ambientes dinâmicos e a dispositivos médicos para tomar decisões instantâneas e precisas, garantindo segurança e eficiência. À medida que as indústrias se voltam cada vez mais para a automação, a computação neuromórfica desempenha um papel fundamental no melhoramento da funcionalidade e fiabilidade destes sistemas, impulsionando ainda mais o seu crescimento no mercado.

Oportunidades

  • Crescimento em aplicações de IA e aprendizagem automática

A integração de sistemas neuromórficos em plataformas de inteligência artificial (IA) e de aprendizagem automática (ML) apresenta uma oportunidade de mercado significativa. Ao aproveitar a computação neuromórfica, as plataformas de IA e ML podem melhorar a eficiência e a precisão de tarefas como a condução autónoma, a robótica e a análise preditiva. A capacidade dos sistemas neuromórficos de processar dados rapidamente e com um consumo mínimo de energia melhora a capacidade de tomada de decisão em tempo real, proporcionando melhores resultados em ambientes dinâmicos. À medida que as indústrias procuram impulsionar a automação e as inovações baseadas em IA, a procura por tecnologias de computação neuromórfica continuará a crescer, criando vastas oportunidades de expansão do mercado.

  • Integração em Tecnologia Vestível

A integração de chips neuromórficos em rastreadores de fitness, monitores de saúde e dispositivos wearable de realidade aumentada (RA) apresenta uma oportunidade de mercado promissora. Estes dispositivos requerem processamento de dados em tempo real para um rastreio preciso, insights de saúde personalizados e experiências de utilizador imersivas. Os chips neuromórficos, com a sua arquitetura inspirada no cérebro, oferecem recursos computacionais de baixa potência e alta velocidade, permitindo uma monitorização contínua e feedback imediato sem esgotar a vida útil da bateria. Este avanço é particularmente crítico na monitorização da saúde, onde a análise em tempo real pode detetar anomalias e melhorar os resultados dos utilizadores. À medida que o mercado dos wearables cresce, impulsionado pelos entusiastas do fitness e pelas necessidades de saúde, a adoção da computação neuromórfica abrirá novas possibilidades, impulsionando a expansão do mercado.

Restrições/Desafios

  • Falta de mão-de-obra qualificada

A natureza especializada da tecnologia de computação neuromórfica exige engenheiros altamente qualificados e proficientes em áreas como a inteligência artificial, a neurociência e o design de hardware. Como a tecnologia ainda está a evoluir, existe um grupo limitado de profissionais com a experiência necessária para desenvolver, implementar e otimizar sistemas neuromórficos de forma eficaz. Esta escassez de talento qualificado representa um desafio significativo para as empresas que procuram adotar e escalar soluções de computação neuromórfica. A lacuna na experiência disponível pode levar a atrasos na inovação e ao aumento dos custos de investigação e desenvolvimento, dificultando, em última análise, o crescimento e a expansão geral do mercado.

  • Elevados custos de desenvolvimento

O desenvolvimento de chips e sistemas neuromórficos envolve tecnologias complexas e de ponta que exigem investimentos significativos em investigação e desenvolvimento (I&D). Estes elevados custos de I&D contribuem para o gasto global de produção de soluções neuromórficas, tornando-as menos acessíveis para adoção generalizada, especialmente entre empresas mais pequenas e startups. A necessidade de materiais especializados, processos de fabrico avançados e longos ciclos de desenvolvimento aumentam ainda mais o encargo financeiro. Como resultado, este elevado custo pode dificultar a adoção em massa de tecnologias de computação neuromórfica, limitando a sua acessibilidade e diminuindo o ritmo de inovação em vários setores que poderiam beneficiar da tecnologia.

Este relatório de mercado fornece detalhes dos novos desenvolvimentos recentes, regulamentos comerciais, análise de importação e exportação, análise de produção, otimização da cadeia de valor, quota de mercado, impacto dos participantes do mercado nacional e localizado, analisa as oportunidades em termos de bolsas de receitas emergentes, alterações nas regulamentações do mercado, análise do crescimento estratégico do mercado, tamanho do mercado, crescimento do mercado de categorias, nichos de aplicação e dominância, aprovações de produtos, lançamentos de produtos, expansões geográficas, inovações tecnológicas no mercado. Para mais informações sobre o mercado, contacte a Data Bridge Market Research para obter um briefing de analista.

Âmbito de mercado da computação neuromórfica

O mercado é segmentado com base na oferta, implementação, aplicações e utilizador final. O crescimento entre estes segmentos irá ajudá-lo a analisar segmentos de baixo crescimento nos setores e fornecerá aos utilizadores uma visão geral e informações valiosas do mercado para os ajudar a tomar decisões estratégicas para identificar as principais aplicações do mercado.

Oferta

  • Hardware
  • Software

Implantação

  • Computação de Borda
  • Computação em Nuvem

Aplicações

  • Reconhecimento de Imagem
  • Processamento de dados
  • Reconhecimento de sinal
  • Detecção de objectos
  • Mineração de dados

Utilizador final

  • Aeroespacial e Defesa
  • TI e Telecom
  • Médico
  • Automotivo
  • Industrial
  • Outros

Análise regional do mercado de computação neuromórfica

O mercado é analisado e são fornecidos insights e tendências sobre o tamanho do mercado por país, oferta, implementação, aplicações e utilizador final, conforme referenciado acima.

Os países abrangidos no relatório de mercado são os EUA, Canadá e México na América do Norte, Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, Resto da Europa na Europa, China, Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico (APAC) na Ásia-Pacífico (APAC), Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África (MEA) como parte do Médio Oriente e África (ME A), Brasil, Argentina e Resto da América do Sul como parte da América do Sul.

A América do Norte domina o mercado da computação neuromórfica, impulsionada principalmente pela presença de grandes fabricantes de chips neuromórficos na região. A infraestrutura tecnológica avançada da região e o forte foco na inovação reforçam ainda mais o seu domínio. Além disso, a crescente procura por aplicações baseadas em IA em setores como o automóvel e a saúde contribui para a liderança de mercado da região.

Prevê-se que a Europa apresente um crescimento substancial entre 2025 e 2032, impulsionado pelo aumento dos investimentos em projetos de computação neuromórfica. Espera-se que o foco da região no avanço das tecnologias de IA e aprendizagem automática promova um maior desenvolvimento. À medida que mais recursos são alocados a estas iniciativas, a Europa está preparada para reforçar a sua posição no mercado da computação neuromórfica.

A secção do relatório sobre os países também fornece fatores individuais que impactam o mercado e alterações na regulamentação do mercado nacional que impactam as tendências atuais e futuras do mercado. Pontos de dados como a análise da cadeia de valor a montante e a jusante, tendências técnicas e análise das cinco forças de Porter, estudos de caso são alguns dos indicadores utilizados para prever o cenário de mercado para países individuais. Além disso, a presença e a disponibilidade de marcas globais e os seus desafios enfrentados devido à grande ou escassa concorrência de marcas locais e nacionais, ao impacto de tarifas domésticas e rotas comerciais são considerados ao fornecer uma análise de previsão dos dados do país.  

Participação no mercado de computação neuromórfica

O cenário competitivo do mercado fornece detalhes por concorrente. Os detalhes incluídos são a visão geral da empresa, finanças da empresa, receitas geradas, potencial de mercado, investimento em investigação e desenvolvimento, novas iniciativas de mercado, presença global, localizações e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa, lançamento de produtos, amplitude e abrangência do produto, domínio da aplicação. Os pontos de dados fornecidos acima estão apenas relacionados com o foco das empresas em relação ao mercado.

Os líderes de mercado da computação neuromórfica que operam no mercado são:

  • Intel Corporation (EUA)
  • IBM (EUA)
  • BrainChip Inc. (Austrália)
  • Qualcomm Technologies, Inc. (EUA)
  • Hewlett Packard Enterprise Development LP (EUA)
  • SAMSUNG (Coreia do Sul)
  • HRL Laboratories, LLC (EUA)
  • General Vision Inc. (EUA)
  • ABR (Singapura)
  • Vicário (EUA)
  • Numenta (EUA)
  • Aspinity (EUA)
  • BrainCo, Inc. (EUA)
  • Bitbrain Technologies (Espanha)
  • Linux Kernel Organization, Inc. (EUA)
  • NEXTMIND SRL (França)
  • Cognixion (Canadá)
  • NeuroPace, Inc. (EUA)
  • MindMaze (Suíça)
  • Innatera Nanosystems BV (Holanda)

Últimos desenvolvimentos no mercado da computação neuromórfica

  • Em fevereiro de 2024, a SynSense (China) adquiriu a iniVation AG (Suíça) para se tornar um fornecedor líder de tecnologia neuromórfica. A fusão combina a experiência da SynSense em processamento de ultrabaixo consumo de energia com as capacidades de deteção de visão neuromórfica da iniVation, criando o SynSense Group. Espera-se que esta integração melhore os sistemas de visão inteligente em vários setores, incluindo eletrónica de consumo, robótica, aeroespacial e automóvel, posicionando a empresa como um participante importante no avanço da tecnologia neuromórfica.
  • Em março de 2024, a NXP Semiconductors (Holanda) e a NVIDIA Corporation (EUA) colaboraram para impulsionar a implementação da IA ​​integrando o TAO Toolkit da NVIDIA com os dispositivos de ponta da NXP. Esta parceria permite que os modelos de IA pré-treinados da NVIDIA sejam executados de forma eficiente nas Unidades de Processamento Neural (NPUs) da NXP em processadores i.MX 93, facilitando o desenvolvimento e a implementação mais rápida de aplicações baseadas em IA em vários setores
  • Em abril de 2024, a Intel revelou o maior sistema neuromórfico do mundo, chamado Hala Point, que é alimentado pelo processador Loihi 2 da Intel. Este sistema foi concebido para promover a investigação em IA inspirada no cérebro e superar os desafios das atuais tecnologias de IA. Comparativamente ao sistema anterior da Intel, o Pohoiki Springs, o Hala Point melhora significativamente a capacidade dos neurónios em mais de dez vezes, oferecendo um desempenho aproximadamente doze vezes superior. Pode lidar com até 20 quatrilhões de operações por segundo, ao mesmo tempo que atinge uma eficiência de mais de 15 triliões de operações de 8 bits por segundo por watt, ao executar redes neuronais profundas padrão
  • Em outubro de 2023, a IBM revelou a sua nova arquitetura de chip, NorthPole, especificamente concebida para inferência neural, com resultados publicados na Science. O NorthPole pode executar tarefas de reconhecimento de imagem com tecnologia de IA de forma mais eficiente e com menor latência em comparação com os chips existentes. Tem um desempenho 4.000 vezes mais rápido que o seu antecessor, o chip TrueNorth. Desenvolvido no laboratório da IBM Research na Califórnia, o chip NorthPole está pronto para revolucionar a escalabilidade dos sistemas avançados de hardware de IA
  • Em dezembro de 2022, a Samsung Electronics Co., Ltd. e a NAVER Corporation, operadora do motor de busca Naver, uniram esforços para desenvolver soluções de semicondutores otimizadas para modelos de inteligência artificial (IA) em hiperescala. Ao combinar a sua expertise em hardware e software, as empresas pretendem acelerar o processamento de grandes cargas de trabalho de IA, aumentando a eficiência e a escalabilidade dos sistemas de IA para aplicações avançadas

SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

O mercado é segmentado com base em Segmentação do mercado global de computação neuromórfica, por oferta (hardware e software), implantação ( computação de ponta e computação em nuvem ), aplicações ( reconhecimento de imagem , processamento de dados, reconhecimento de sinal, detecção de objectos e mineração de dados), utilizador final (aeroespacial e defesa, TI e telecomunicações, médico, automóvel, industrial e outros) - tendências da indústria e previsão para 2032 .
O tamanho do Relatório de análise do tamanho, quota e tendências do mercado foi avaliado em USD 28.30 USD Billion no ano de 2024.
O Relatório de análise do tamanho, quota e tendências do mercado está projetado para crescer a um CAGR de 34.2% durante o período de previsão de 2025 a 2032.
Testimonial