Global Natural Language Processing Nlp Healthcare Life Sciences Market
Tamanho do mercado em biliões de dólares
CAGR : %
Período de previsão |
2024 –2031 |
Tamanho do mercado (ano base ) | USD 2.11 Billion |
Tamanho do mercado ( Ano de previsão) | USD 8.48 Billion |
CAGR |
|
Principais participantes do mercado |
|
>O mercado global de processamento de linguagem natural PNL Healthcare Life Sciences foi avaliado em 2,11 mil milhões de dólares em 2023. O tamanho do mercado deverá crescer a um CAGR de 19% e atingir 8,48 mil milhões de dólares até 2031.
Mercado global de processamento de linguagem natural PNL Healthcare Life Science Market – Visão geral da indústria
O setor da saúde e das ciências biológicas produz uma enorme quantidade de dados, incluindo registos eletrónicos de saúde, relatórios de ensaios clínicos, dados de investigação e relatórios de doentes. De acordo com o Fórum Económico Mundial, a indústria da saúde gera mais de 30% dos dados gerados em todo o mundo, a maior parte dos quais não é utilizada. A incorporação do Processamento de Linguagem Natural (PNL) no setor da saúde desempenha um enorme papel no processamento de dados médicos, levando a inovações e invenções que podem potencialmente tornar-se a base para a descoberta de tratamentos e terapias, medicamentos e medicamentos que podem revelar-se ser eficazes. A PNL transformou completamente o setor da saúde e das ciências biológicas com a sua abordagem abrangente orientada para a análise de dados. Agora, não existem registos de saúde e ciências biológicas que não sejam utilizados com a análise dinâmica de dados não estruturados da PNL, análise de sentimento, reconhecimento de entidades nomeadas e descoberta de medicamentos para extrair insights valiosos que ajudam a melhorar drasticamente o envolvimento dos doentes e, consequentemente, o mercado global das ciências biológicas da saúde da PNL está a expandir-se.
O relatório de mercado de pesquisa de mercado da Data Bridge fornece detalhes dos desenvolvimentos recentes, regulamentos comerciais, quota de mercado, tendências de mercado com base nas suas segmentações e análises regionais, impacto dos participantes do mercado, análise de oportunidades em termos de bolsas de receitas emergentes, regulamentos de mercado, mercado estratégico. Para mais informações sobre o mercado, contacte a equipa de analistas especializados da Data Bridge Market Research. A nossa equipa irá ajudá-lo a tomar decisões de mercado informadas para alcançar o crescimento do negócio.
Tamanho do mercado global de processamento de linguagem natural PNL Healthcare Life Sciences
Detalhes das métricas do relatório de mercado de ciências da vida da PNL Healthcare |
|
Período de previsão |
2024-2031 |
Ano base |
2023 |
Ano histórico |
2022 (personalizável 2016-2021) |
Unidade de medição |
Bilhões de dólares |
Ponteiro de dados |
insights de mercado, valor de mercado, taxa de crescimento, segmentos de mercado, cobertura geográfica, participantes do mercado e cenário de mercado, análise especializada aprofundada, epidemiologia do paciente, análise de pipeline, análise de preços e estrutura regulamentar. |
A convergência da PNL e dos cuidados de saúde e das ciências da vida trouxe evolução à medicina, utilizando os dados em benefício do sector. O crescimento exponencial dos dados de cuidados de saúde está a acelerar a necessidade de soluções de PNL que possam ajudar a gerir este mar de dados não estruturados para extrair informações valiosas. As inovações contínuas em IA e aprendizagem automática estão a ajudar a desenvolver capacidades e a precisão das aplicações de PNL, incentivando ainda mais a adopção de tecnologias de PNL para capacitar a investigação e o desenvolvimento nos cuidados de saúde. A interligação da PNL e da saúde é uma vantagem para os prestadores de cuidados de saúde, sintonizando o atendimento ao paciente e os serviços de saúde para proporcionar o crescimento do mercado. A Databridge Market Research mergulhou na análise abrangente do mercado e revelou que os mercados globais de processamento de linguagem natural, PNL, saúde, ciências da vida, aumentaram a um CAGR de 3,64%. A dimensão do mercado está avaliada em 2,11 mil milhões de dólares em 2023 e deverá crescer até aos 8,48 mil milhões de dólares em 2031.
Dinâmica do mercado de ciências da vida em saúde PNL
Motores de crescimento do mercado de ciências biológicas da PNL Healthcare
Organização de registos de saúde eletrónicos (RSE) para análise posterior
Os Registos de Saúde Eletrónicos (RSE) utilizados pelas organizações de saúde geram uma infinidade de dados relacionados com os doentes que se tornam difíceis de estruturar, armazenar e analisar. Estes registos eletrónicos incluem frequentemente relatórios médicos, históricos de pacientes e outros tipos de dados. Não só é importante organizar e examinar estes dados, mas igualmente importante é o acesso fácil a estes dados. As tecnologias de PNL que incluem documentação clínica, reconhecimento de fala, pesquisa de data mining e apoio à decisão clínica são altamente produtivas na extração e exame de dados médicos e na garantia da sua disponibilidade de acordo com a utilização. Ao tirar partido da PNL, os prestadores de cuidados de saúde podem analisar e interpretar de forma mais eficaz esta vasta gama de dados, levando a uma melhor tomada de decisões clínicas, a um atendimento personalizado ao paciente e a uma maior eficiência operacional, alimentando assim o crescimento do mercado.
Análise Preditiva Baseada em Inteligência Artificial (IA) e Machine Learning (ML)
A PNL, sendo uma subdivisão da inteligência artificial , está dotada de modelos estatísticos e analíticos que têm um papel a desempenhar na identificação de tendências e padrões. Quando a PNL na área da saúde é alimentada com dados complexos, estrutura-os para realizar análises abrangentes dos registos dos doentes. Por outras palavras, executa análises preditivas sobre os dados relacionados com o paciente que revelam as actuais condições de saúde e o nível de efeito no corpo, bem como ajuda a prever doenças e enfermidades às quais um paciente é vulnerável. Estas tecnologias permitem extrair insights úteis, identificar padrões e prever resultados a partir de grandes conjuntos de dados para decisões clínicas mais informadas e melhores resultados para os doentes. A conclusão desta análise preditiva é um melhor atendimento ao paciente e medidas avançadas de prevenção para prevenir as condições de saúde previstas. A análise preditiva através da PNL é um dos principais contribuintes para melhorar os serviços de cuidados ao paciente e promover o crescimento do mercado.
Automatizar registos e documentação de doentes reduz custos com saúde
A documentação clínica automatizada, alimentada pelo Processamento de Linguagem Natural (PLN), agiliza a gestão de registos de pacientes, convertendo informações faladas ou escritas em dados estruturados e acionáveis. Esta automatização reduz a carga dos profissionais de saúde, minimiza os erros de introdução manual e garante que as informações dos pacientes são registadas de forma precisa e abrangente. Esta tecnologia de automatização é uma forma económica, tornando mais fácil para os profissionais de saúde gastarem mais tempo no atendimento ao paciente do que na administração, levando a uma maior precisão e, portanto, à eficiência geral na manutenção de registos médicos. Com estas tarefas simples a tornarem-se automatizadas, os profissionais de saúde estão a aproveitar a eficiência de custos e a melhorar a qualidade geral dos cuidados prestados aos doentes. A automatização permite ainda a unificação dos registos de saúde, agrupando todo o registo do paciente armazenado na base de dados de outros médicos ou centros de saúde. A poupança de custos da saúde devido à PNL é um estímulo para o crescimento da PNL global na saúde e nas ciências da vida.
Oportunidades de crescimento do mercado de ciências biológicas da PNL Healthcare
Plano de tratamento personalizado
A PNL desempenha um papel fundamental na preparação de um plano de tratamento individualizado e focado. A capacidade da PNL de extrair e unificar dados de pacientes de várias fontes, como registos de saúde eletrónicos, notas clínicas e históricos médicos, o que permite um fácil processamento e identificação de necessidades específicas de pacientes, fatores genéticos e condições de saúde. Isto ajuda os profissionais de saúde a preparar um plano de tratamento que vá ao encontro das necessidades dos doentes. Elaborar um plano de tratamento personalizado é uma oportunidade para os médicos criarem o tratamento mais eficaz para os seus pacientes e, assim, expandirem a sua base de pacientes. Por exemplo, a PNL pode destacar os padrões no historial do paciente para que se possa determinar os medicamentos com maior probabilidade de serem eficazes ou até mesmo identificar possíveis efeitos secundários num caso semelhante a outros. Como tal, a PNL apoia a medicina de precisão, onde as intervenções serão mais focadas e mais eficazes, melhorando assim a eficiência do tratamento e os resultados dos doentes.
Integrando IOT em Wearables
Os wearables incorporados com PNL alimentados por IoT permitem a captura de dados do paciente em tempo real. Ajuda a monitorizar a saúde dos doentes remotamente durante todo o dia e permite aos profissionais de saúde registar quaisquer complicações e variações para que possam agir imediatamente para preparar um plano de ação para prevenir tal complexidade no futuro.
Colaboração com empresas farmacêuticas e de biotecnologia
A colaboração com empresas farmacêuticas e de biotecnologia para integrar o Processamento de Linguagem Natural (PLN) na descoberta de medicamentos, na gestão de ensaios clínicos e nos processos de farmacovigilância impulsiona a eficiência e acelera a inovação nas ciências da vida. A PNL aumenta a eficiência dos ensaios clínicos ao automatizar a extração de dados dos registos médicos e dos relatórios dos doentes, facilitando o recrutamento e a análise mais rápida dos dados dos ensaios.
Desafios de crescimento do tamanho do mercado de ciências da vida da PNL Healthcare
A PNL na área da saúde e nas ciências da saúde é geralmente alimentada com grupos específicos de termos que podem não se aplicar a qualquer outro comando. Como a linguagem humana continua a evoluir, o grupo predefinido de termos pode estruturar os dados de forma imprecisa. Isto acontece normalmente quando um programa de PNL tem um grupo integrado de termos que podem não corresponder aos dados não estruturados que estão a ser examinados. Este desafio é fácil de ultrapassar com um certo nível de envolvimento humano.
A PNL é capaz de organizar e categorizar dados não estruturados. No entanto, a ferramenta pode tornar-se menos eficiente face à complexidade da linguagem humana. Pode não ser capaz de lidar com linguagem, dialeto e pontos de referência complicados. Como resultado, isto aumenta as hipóteses de falsos positivos e negativos.
Restrições de crescimento do tamanho do mercado de ciências da vida da PNL Healthcare
Preocupações com a privacidade e segurança dos dados
Na aplicação de soluções de PNL, o processamento de informações confidenciais de pacientes dará origem a preocupações drásticas sobre as leis de privacidade e violações de segurança de dados. Embora os prestadores de cuidados de saúde já estejam a explorar todas as oportunidades para implementar ao máximo as tecnologias da PNL, terão de enfrentar leis rígidas de protecção de dados ao abrigo da HIPAA nos EUA e do GDPR na Europa – ambas promulgadas com o objectivo de manter a confidencialidade dos doentes e conter o possível acesso não autorizado a informações pessoais de saúde. Para conseguir tudo isto, os sistemas de PNL devem estar totalmente habilitados para a segurança. Deverá ser garantido que este requisito seja satisfeito através da aplicação de métodos robustos para a encriptação de dados em repouso e em trânsito, controlos de acesso muito rigorosos que limitem o acesso aos dados apenas a utilizadores autorizados e técnicas de anonimização para ajudar a proteger contra a exposição indesejada de a identidade do doente. A agregação destes protocolos de segurança pode garantir
Complexidade de integração dos sistemas de PNL
A integração de sistemas de processamento de linguagem natural (PNL) com a infraestrutura de TI de saúde existente, incluindo EHRs e sistemas clínicos, pode ser complexa e demorada. As organizações de saúde enfrentam desafios como problemas de interoperabilidade, normalização de dados e compatibilidade com sistemas legados ao implementar soluções de PNL. O processo de integração requer um planeamento cuidadoso, personalização e coordenação com as equipas de TI para garantir uma conectividade e funcionalidade perfeitas em diferentes plataformas. Além disso, a formação do pessoal de saúde para utilizar eficazmente as ferramentas da PNL e interpretar os conhecimentos gerados coloca desafios adicionais de implementação.
Âmbito e tendências do mercado de ciências da vida da PNL Healthcare
Visão geral das segmentações de mercado das ciências da vida da PNL Healthcare |
|||
Tipo de segmento |
Subsegmentos |
||
Componente |
Soluções e serviços independentes |
||
Tipo de PNL |
PNL baseada em regras, PNL estatística, PNL híbrida |
||
Modo de implantação |
No local, nuvem |
||
Tamanho da organização |
Grandes empresas, pequenas e médias empresas |
||
|
|
||
Utilizador final |
PNL para Médicos, PNL para Investigadores, PNL para Doentes, PNL para Operadores Clínicos |
Visão principal
- Nos últimos anos, com o surgimento do potencial da IA como um divisor de águas na área da saúde, o emprego de técnicas de aprendizagem automática e PNL para o processamento eficaz de volumes crescentes de dados impulsiona uma das aplicações mais impressionantes, conhecida como a codificação clínica automatizada, que agiliza a administração e gestão de registos clínicos em ambiente hospitalar e de investigação médica.
- Tem havido uma onda de artigos sobre codificação clínica automatizada com aprendizagem profunda (como a atual abordagem dominante da IA) nos últimos anos, como revisto em pesquisas recentes.
- Embora as preocupações sejam abordadas e a segurança e a eficácia dos chatbots sejam apontadas, os aspetos humanos dos cuidados de saúde não podem ser substituídos. Desta forma, os chatbots só podem tornar-se parte integrante da prática clínica para trabalhar em conjunto com os profissionais de saúde, diminuindo custos, melhorando a eficiência do fluxo de trabalho e, assim, improvisando os resultados para obter melhores resultados.
Análise regional do mercado de ciências da vida da PNL Healthcare – Tendências de mercado
Visão regional do mercado de ciências biológicas da PNL Healthcare |
|
Regiões |
Países |
Europa |
Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, Resto da Europa |
APAC |
China, Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico |
América do Norte |
EUA, Canadá e México |
MEA |
Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África |
Ámérica do Sul |
Brasil, Argentina e Resto da América do Sul |
Principais insights
- Espera-se que a América do Norte domine o mercado devido à crescente procura de soluções de PNL e aos investimentos substanciais em robótica e iniciativas de investigação e desenvolvimento relacionadas com a PNL. A infra-estrutura avançada de cuidados de saúde da região e a forte presença dos principais gigantes tecnológicos facilitam a rápida adopção de tecnologias de PNL em várias aplicações, incluindo documentação clínica, análise de interacção com pacientes e análise de dados.
- Prevê-se que a Ásia-Pacífico testemunhe um crescimento significativo devido à adoção generalizada de tecnologias avançadas destinadas a otimizar as operações comerciais. O aumento dos investimentos na infraestrutura de TI da saúde e a crescente consciencialização dos benefícios da PNL na melhoria dos processos de tomada de decisão clínica e no envolvimento dos doentes são fatores-chave que impulsionam este crescimento.
- A Organização Holandesa para a Investigação Científica (NWO) está envolvida em projetos que aplicam a PNL para a análise de dados científicos obtidos a partir de estudos de investigação biomédica. O objetivo é desenvolver novos tratamentos e melhorar a compreensão da biologia das doenças.
- O projeto European Health Data Space (EHDS), financiado pela União Europeia, centra-se no desenvolvimento de ferramentas de PNL capazes de lidar com várias línguas europeias. A iniciativa visa criar soluções de PNL padronizadas que possam processar dados de saúde em várias línguas e dialetos em toda a Europa.
- A NHS Digital no Reino Unido está focada na integração de tecnologias de PNL em sistemas de RSE para melhorar a documentação clínica e a recuperação de informação. Esta integração tenta alcançar um maior nível de precisão dos dados dos pacientes, o que por outro lado permitirá a condução adequada de decisões clínicas acertadas, pelo facto de automatizar os processos de extracção e análise de dados do registo médico.
- Na África do Sul, a Data Science Africa desenvolve modelos de PNL que são construídos para suportar uma série de línguas locais, desde o Afrikaans e o Zulu a outras, para serem colocadas numa posição de satisfazer os requisitos multilingues dentro de um sistema de saúde de base regional .
Jogadores líderes do mercado de ciências da vida da saúde PNL
- 3M (EUA)
- Cerner Corporation (EUA)
- Nuance Communications Inc.
- (EUA)
- Microsoft (EUA)
- IBM (EUA)
- Google LLC (Alphabet Inc.) (EUA)
- Amazon Web Services Inc. (EUA)
- (EUA)
- Averbis (Alemanha)
- Clinithink (EUA)
- Lexalytics (EUA)
- Ciência Narrativa (EUA)
- Laboratórios JohnSnow (EUA)
- BenevolentAI (Reino Unido)
Desenvolvimentos recentes do mercado de ciências da vida da PNL Healthcare
- Em fevereiro de 2024, a Persistent Systems colaborou com a Microsoft para lançar uma nova solução PHM alimentada por IA generativa. Desenvolvida para sustentar modelos de cuidados baseados no valor, esta solução avançada utiliza SDOH para medir as necessidades não clínicas dos doentes. Como resultado, reforça a precisão da análise preditiva nas despesas de saúde em diversas condições clínicas.
- Em junho de 2023, a Apixio, líder em soluções de inteligência artificial para cuidados de saúde baseados em valor, concluiu a sua fusão com a ClaimLogiq, uma empresa de tecnologia conhecida pela sua experiência em melhorar a precisão dos pedidos de pré-pagamento para planos de saúde. A entidade recém-combinada terá o nome de Apixio e tornar-se-á imediatamente um dos maiores e mais dominantes players no espaço de dados e análises de saúde. A fusão estratégica reúne a IA avançada da Apixio com a precisão do ClaimLogiq no processamento de sinistros, criando uma plataforma poderosa para a entrega de insights e soluções abrangentes. O novo Apixio pretende revolucionar a gestão dos cuidados de saúde, melhorando a precisão dos dados, trazendo otimização nas previsões de custos e impulsionando estratégias de cuidados de saúde mais eficazes, baseadas no valor – um novo padrão na indústria da análise de cuidados de saúde.
O relatório de mercado da DBMR sobre o mercado de Processamento de Linguagem Natural PNL Healthcare Life Science leva-o através de informações valiosas que podem contribuir para a tomada de várias decisões de negócios importantes. Com base nos nossos relatórios e experiência de pesquisa, pode criar estratégias de crescimento realistas para o seu negócio.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.