Global MLOPs Market – Industry Trends and Forecast to 2031

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista  Comprar agora Comprar agora Consulte antes Comprar Consulte antes Relatório de amostra grátis Relatório de amostra grátis

Global MLOPs Market – Industry Trends and Forecast to 2031

  • ICT
  • Upcoming Reports
  • Apr 2024
  • Global
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60

Global Mlops Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Diagram Período de previsão
2024 –2031
Diagram Tamanho do mercado (ano base )
USD 7.62 Billion
Diagram Tamanho do mercado ( Ano de previsão)
USD 11.69 Billion
Diagram CAGR
%
Diagram Principais participantes do mercado
  • Manequim1
  • Manequim2
  • Manequim3
  • Manequim4
  • Manequim5

>Mercado global de MLOPs, por componente (plataforma, serviço), modo de implementação (on-site, cloud, híbrido), dimensão da organização (grandes empresas, pequenas e médias empresas (PME)), verticais da indústria (serviços financeiros (BFSI) , manufacturing , Informática (TI) e Telecom, Retalho e E-commerce , Saúde, Outros) - Tendências e Previsões do Sector para 2031.

Análise e dimensão do mercado de MLOPs

As operações de aprendizagem automática (MLOps) referem-se ao conjunto de práticas e ferramentas utilizadas para agilizar e automatizar a implementação, monitorização e gestão de modelos de aprendizagem automática em ambientes de produção. O MLOps visa preencher a lacuna entre o desenvolvimento e a implementação de modelos de aprendizagem automática, garantindo consistência, fiabilidade e escalabilidade durante todo o ciclo de vida da aprendizagem automática.

A Data Bridge Market Research analisa que o mercado global de MLOPs, que foi de 7,62 mil milhões de dólares em 2023, deverá atingir os 11,69 mil milhões de dólares até 2031, e deverá passar por um CAGR de 5,5% durante o período de previsão de 2024 a 2031. Além dos insights de mercado, tais como o valor de mercado, a taxa de crescimento, os segmentos de mercado, a cobertura geográfica, os participantes do mercado e o cenário de mercado, o relatório de mercado com curadoria da equipa de pesquisa de mercado da Data Bridge inclui análise especializada aprofundada, análise de importação/exportação, análise de preços, análise de consumo de produção e análise de pilão.

Âmbito do relatório e segmentação de mercado

Métrica de reporte

Detalhes

Período de previsão

2024 a 2031

Ano base

2023

Anos históricos

2022 (Personalizado 2016 a 2021)

Unidades Quantitativas

Receita em biliões de dólares, volumes em unidades, preços em dólares

Segmentos cobertos

Componente (plataforma, serviço), modo de implementação (on-site, cloud, híbrido), dimensão da organização (grandes empresas, pequenas e médias empresas (PME)), setores verticais da indústria (serviços financeiros (BFSI), manufatura, tecnologia da informação (TI) ) e Telecom, Retalho e E-commerce, Saúde, Outros)

Países abrangidos

EUA, Canadá, México, Brasil, Argentina, Resto da América do Sul, Alemanha, Itália, Reino Unido, França, Espanha, Holanda, Bélgica, Suíça, Turquia, Rússia, Resto da Europa, Japão, China, Índia, Coreia do Sul , Austrália, Singapura, Malásia, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico, Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África

Participantes do mercado abrangidos

Databricks (EUA), Domino Data Lab (EUA), Kubeflow (by Google) (EUA), Amazon SageMaker (EUA), Paperspace Gradient (EUA), Fiddler AI (EUA), MLflow (by Databricks) (EUA), Valohai ( Finlândia), Pachyderm (EUA), ZenML (Alemanha)

Oportunidades de mercado

  • Crescente procura por IA e aprendizagem de máquina
  • Foco crescente na democratização dos MLOps

Definição de mercado

The MLOps encompasses a range of solutions and services that streamline the entire machine learning lifecycle, from model development and training to deployment, monitoring, and management.  These MLOps tools bridge the gap between data science and production, ensuring efficient workflows, optimized model performance, and the smooth integration of machine learning models into real-world applications across various industries.

MLOPs Market Dynamics

Drivers

  • Growing Demand for Improved Model Governance and Explainability

The growing demand for improved model governance and explainability is a significant driver propelling the global MLOps (machine learning operations) market forward. As organizations increasingly integrate machine learning models into their operations, there is a heightened emphasis on ensuring the reliability, transparency, and accountability of these models. Enhanced model governance involves establishing stringent policies and controls to manage the entire lifecycle of machine learning models, addressing aspects such as version control, compliance, and risk management. Additionally, the need for enhanced explainability is driving the development of tools and techniques to interpret model decisions, providing stakeholders with insights into model behavior and enabling informed decision-making. This emphasis on governance and explainability underscores the critical role that MLOps solutions play in fostering trust, compliance, and reliability within machine learning deployments, thereby fueling market growth.

  • Rising Cloud Adoption and Scalability

The escalating adoption of cloud computing and the pursuit of scalability represent pivotal drivers propelling the global MLOps (machine learning operations) market. With organizations increasingly leveraging cloud platforms to host their machine learning infrastructure, there arises a pressing need for MLOps solutions capable of seamlessly integrating with cloud environments and facilitating scalable model deployment and management. Cloud-based MLOps services offer unparalleled flexibility, enabling businesses to rapidly scale their machine learning operations in response to fluctuating demand while also streamlining collaboration, version control, and resource optimization. As a result, the convergence of rising cloud adoption and scalability requirements underscores the indispensable role of MLOps solutions in orchestrating efficient, agile, and scalable machine learning workflows on a global scale.

Opportunities

  • Integration with Emerging Technologies

A integração com tecnologias emergentes apresenta uma oportunidade significativa para o mercado global de MLOps. À medida que as novas tecnologias, como a inteligência artificial (IA), a computação de ponta, a Internet das Coisas (IoT) e a blockchain continuam a evoluir, surge uma necessidade complementar de soluções MLOps avançadas que possam integrar-se perfeitamente com estas tecnologias emergentes. Aproveitando as ferramentas e práticas de MLOps, as organizações podem aumentar a eficiência, a fiabilidade e a escalabilidade das suas iniciativas de IA e machine learning em diversos domínios. A integração com tecnologias emergentes permite que as plataformas MLOps abordem casos de utilização complexos, como análises em tempo real, manutenção preditiva, sistemas autónomos e experiências de utilizador personalizadas, abrindo assim novos caminhos para a inovação e diferenciação competitiva no mercado.

  • Foco crescente nas PME e nos desenvolvedores individuais

O crescente foco nas pequenas e médias empresas (PME) e nos programadores individuais apresenta uma oportunidade significativa para o Mercado Global de MLOps. À medida que a adoção da aprendizagem automática e da IA ​​se expande para além das grandes empresas, as PME e os programadores individuais procuram cada vez mais soluções MLOps acessíveis e económicas, adaptadas às suas necessidades específicas e restrições de recursos. Atendendo a este segmento crescente do mercado, os fornecedores de MLOps transformam-se num vasto grupo de potenciais clientes, ansiosos por aproveitar as capacidades de aprendizagem automática para melhorar os seus produtos, serviços e operações. Além disso, capacitar as PME e os programadores individuais com plataformas MLOps fáceis de utilizar pode democratizar o acesso à análise e à automação avançadas, promovendo a inovação e impulsionando uma adoção mais ampla de tecnologias de aprendizagem automática em diversas indústrias e aplicações.

Restrições/Desafios

  • Riscos crescentes de segurança de dados

A escalada dos riscos de segurança de dados representa um desafio substancial para o mercado global de MLOPs. Com a proliferação de dados confidenciais utilizados em operações de aprendizagem automática, incluindo informações de identificação pessoal e dados comerciais proprietários, o potencial para violações de dados, acesso não autorizado e ataques maliciosos torna-se cada vez mais pronunciado. Garantir a confidencialidade, integridade e disponibilidade dos dados durante todo o ciclo de vida do MLOps, desde a formação até à implementação e mais além, requer medidas de segurança robustas e a adesão a normas de conformidade rigorosas. No entanto, a complexidade dos fluxos de trabalho MLOps, juntamente com a natureza distribuída do processamento e armazenamento de dados, complica os esforços de segurança e aumenta a vulnerabilidade às ciberameaças.

  • Complexidade das ferramentas MLOps

A complexidade associada às ferramentas MLOps surge como um desafio significativo para o mercado global de MLOps. Embora estas ferramentas ofereçam capacidades avançadas para gerir e implementar modelos de aprendizagem automática, a sua natureza complexa apresenta muitas vezes barreiras à adoção, especialmente para organizações que carecem de conhecimentos ou recursos especializados. As ferramentas MLOps complexas podem exigir formação extensiva e proficiência técnica para navegar eficazmente, levando a tempos de implementação mais longos, custos mais elevados e maior risco de erros. Além disso, o ritmo acelerado da inovação no espaço MLOps agrava ainda mais este desafio, à medida que as organizações lutam para acompanhar a evolução das tecnologias e das melhores práticas.

Este relatório de mercado fornece detalhes de novos desenvolvimentos recentes, regulamentos comerciais, análise de importação-exportação, análise de produção, otimização da cadeia de valor, quota de mercado, o impacto dos participantes do mercado doméstico e localizado, analisa as oportunidades em termos de bolsas das receitas emergentes, alterações nas regulamentações do mercado. , análise estratégica do crescimento do mercado, tamanho do mercado, crescimento do mercado da categoria, nichos de aplicação e domínio, aprovações de produtos, lançamentos de produtos, expansões geográficas, inovações tecnológicas no mercado. Para mais informações sobre o mercado, contacte a Data Bridge Market Research para um resumo do analista, a nossa equipa irá ajudá-lo a tomar uma decisão de mercado informada para alcançar o crescimento do mercado.

Desenvolvimentos recentes

  • Em maio de 2021, a Google Cloud lançou a Vertex AI, uma plataforma de aprendizagem automática gerida, integrando vários serviços para a construção, formação e implementação de modelos de aprendizagem automática, simplificando o ciclo de vida de desenvolvimento da IA. Esta iniciativa teve como objetivo agilizar os processos de desenvolvimento e implementação de modelos, permitindo às organizações acelerar a adoção da IA ​​e alcançar os objetivos de negócio de forma eficiente.
  • Em setembro de 2019, a DataRobot lançou a sua solução MLOps após a aquisição da ParallelM, integrando capacidades de gestão e monitorização de modelos para a implementação centralizada, monitorização e governação de modelos de aprendizagem automática nas empresas, melhorando, em última análise, a eficiência da implementação de IA. Esta iniciativa teve como objetivo enfrentar os desafios enfrentados pelas organizações na obtenção de valor mensurável dos projetos de IA, fornecendo uma solução abrangente para automatizar e gerir todo o ciclo de vida da aprendizagem automática.

Âmbito global do mercado de MLOPs

O mercado é segmentado com base nos componentes, modo de implementação, tamanho da organização e verticais do setor. O crescimento entre estes segmentos irá ajudá-lo a analisar segmentos de crescimento escasso nas indústrias e fornecer aos utilizadores uma valiosa visão geral do mercado e insights de mercado para os ajudar a tomar decisões estratégicas para identificar as principais aplicações do mercado.

Componente

  • Plataforma
  • Serviço

Modo de implantação

  • No local
  • Nuvem
  • Híbrido

Tamanho da organização

  • Grandes Empresas
  • Pequenas e Médias Empresas (PME)

Verticais da indústria

  • Serviços Financeiros (BFSI)
  • Fabricação
  • Tecnologia de Informação (TI) e Telecom
  • Retalho e comércio eletrônico
  • Assistência médica
  • Outros

Análise/Insights da região do mercado de MLOPs

O mercado é analisado e são fornecidos insights e tendências do tamanho do mercado por região, componente, modo de implementação, tamanho da organização e verticais do setor, como mencionado acima.

As regiões abrangidas no mercado são a América do Norte, América do Sul, Europa, Ásia-Pacífico e Médio Oriente e África. Os países abrangidos no relatório global do mercado de MLOPs são os EUA, Canadá, México, Brasil, Argentina, Resto da América do Sul, Alemanha, Itália, Reino Unido, França, Espanha, Holanda, Bélgica, Suíça, Turquia, Rússia, Resto da Europa, Japão, China, Índia, Coreia do Sul, Austrália, Singapura, Malásia, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico, Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África.

A América do Norte domina o mercado global de MLOps por várias razões. A região possui um ecossistema robusto de empresas tecnológicas, instituições de investigação e profissionais qualificados especializados em aprendizagem automática e ciência de dados, promovendo a inovação e impulsionando a liderança de mercado. Além disso, a América do Norte alberga muitos fornecedores líderes de serviços de cloud, oferecendo infraestruturas escaláveis ​​e soluções MLOps avançadas que atendem a diversas necessidades de negócio. Além disso, o forte ambiente regulamentar da região, juntamente com um mercado empresarial maduro, incentiva a adoção generalizada de práticas MLOps para garantir a conformidade, a governação e a gestão de riscos. Além disso, a cultura empreendedora e o ecossistema de capital de risco da América do Norte facilitam o rápido crescimento de startups e players emergentes no espaço MLOps, contribuindo para o domínio da região no mercado global. No geral, a convergência de conhecimentos tecnológicos, infra-estruturas de apoio, quadros regulamentares e dinamismo empresarial posiciona a América do Norte como pioneira na condução do avanço e adopção de MLOps em todo o mundo.

A região Ásia-Pacífico emerge como a região que mais cresce no mercado global de MLOPs devido a vários fatores-chave. A região está a testemunhar uma rápida transformação digital em vários setores, impulsionando a adoção de tecnologias de aprendizagem automática e de IA para aumentar a eficiência e a competitividade das empresas. À medida que as organizações na Ásia-Pacífico reconhecem cada vez mais a importância estratégica dos insights baseados em dados, há uma procura crescente de soluções MLOps para agilizar o desenvolvimento, a implementação e a gestão de modelos de aprendizagem automática.

The region section of the report also provides individual market-impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as downstream and upstream value chain analysis, technical trends, and Porter’s five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and the challenges faced due to large or scarce competition from local and domestic brands, the impact of domestic tariffs, and trade routes are considered while providing forecast analysis of the region data.   

Competitive Landscape and MLOPs market Share Analysis

The market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, and application dominance. The above data points provided are only related to the companies' focus related to the market.

Some of the major players operating in the market are:

  • Databricks (U.S.)
  • Domino Data Lab (U.S.)
  • Kubeflow (by Google) (U.S.)
  • Amazon SageMaker (U.S.)
  • Paperspace Gradient (U.S.)
  • Fiddler AI (U.S.)
  • MLflow (by Databricks) (U.S.)
  • Valohai (Finland)
  • Pachyderm (U.S.)
  • ZenML (Germany)


SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

The MLOPs market size will be worth USD 11.69 billion by 2031.
The growth rate of the MLOPs market is 5.5%.
Growing Demand for Improved Model Governance and Explainability & Rising Cloud Adoption and Scalability are the growth drivers of the MLOPs market.
Component, deployment mode , organization size, and industry verticals are the factors on which the MLOPs market research is based.
Major companies in the MLOPs market are Databricks (U.S.), Domino Data Lab (U.S.), Kubeflow (by Google) (U.S.), Amazon SageMaker (U.S.), Paperspace Gradient (U.S.), Fiddler AI (U.S.), MLflow (by Databricks) (U.S.), Valohai (Finland), Pachyderm (U.S.), ZenML (Germany).