Global Deep Learning In Machine Vision Market
Tamanho do mercado em biliões de dólares
CAGR :
%

![]() |
2025 –2032 |
![]() | USD 5.13 Billion |
![]() | USD 13.18 Billion |
![]() |
|
![]() |
|
Segmentação do mercado global de Deep Learning em visão de máquina, por oferta (hardware, software e serviços), aplicação (inspeção, análise de imagem, detecção de anomalias, classificação de objetos, rastreamento de objetos, contagem, detecção de código de barras, detecção de recursos, detecção de localização, reconhecimento óptico de caracteres, reconhecimento facial, segmentação de instâncias e outros), objeto (imagem e vídeo), vertical (eletrônicos, manufatura, automotivo e transporte, alimentos e bebidas, aeroespacial, saúde, construção e materiais, energia e outros) - tendências do setor e previsão para 2032
Tamanho do mercado de aprendizado profundo em visão computacional
- O mercado global de aprendizado profundo em visão computacional foi avaliado em US$ 5,13 bilhões em 2024 e deverá atingir US$ 13,18 bilhões até 2032
- Durante o período previsto de 2025 a 2032, o mercado deverá crescer a um CAGR de 12,50%, impulsionado principalmente pela crescente demanda por inspeção de qualidade automatizada
- Este crescimento é impulsionado pela crescente adoção de reconhecimento de imagem com tecnologia de IA e pela expansão do uso de sistemas de visão computacional em setores como manufatura, saúde e automotivo.
Análise de Mercado de Aprendizado Profundo em Visão de Máquina
- O mercado de aprendizado profundo em visão computacional está experimentando um crescimento significativo, impulsionado pela crescente demanda por inspeção de qualidade automatizada, pela crescente adoção de reconhecimento de imagem com tecnologia de IA e pela integração da visão computacional com a automação industrial em vários setores.
- Os avanços na computação de alto desempenho, IA de ponta e redes neurais profundas estão aprimorando as capacidades dos sistemas baseados em visão, permitindo a tomada de decisões em tempo real, a detecção de defeitos e a automação aprimorada de processos nas indústrias de manufatura, saúde e automotiva.
- A América do Norte domina o mercado de aprendizado profundo em visão computacional devido à forte presença de empresas líderes em tecnologia, investimentos robustos em P&D e à ampla adoção de automação com tecnologia de IA em setores como automotivo e eletrônico.
- Por exemplo, nos EUA, empresas como a NVIDIA e a Cognex estão a desenvolver sistemas de visão baseados em IA para melhorar o controlo de qualidade e agilizar os processos de produção.
- Tendências emergentes, como detecção de defeitos com tecnologia de IA, rastreamento de objetos baseado em aprendizado profundo e a integração de visão computacional na robótica estão transformando o aprendizado profundo no cenário de visão computacional, tornando-o um componente crítico da automação industrial moderna e da garantia de qualidade.
Escopo do Relatório e Segmentação do Mercado de Deep Learning em Visão Computacional
Atributos |
Insights importantes do mercado de Deep Learning em visão computacional |
Segmentos abrangidos |
|
Países abrangidos |
América do Norte
Europa
Ásia-Pacífico
Oriente Médio e África
Ámérica do Sul
|
Principais participantes do mercado |
|
Oportunidades de mercado |
|
Conjuntos de informações de dados de valor agregado |
Além dos insights sobre cenários de mercado, como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research também incluem análises aprofundadas de especialistas, produção e capacidade de empresas representadas geograficamente, layouts de rede de distribuidores e parceiros, análise detalhada e atualizada de tendências de preços e análise de déficit da cadeia de suprimentos e demanda. |
Tendências de mercado de aprendizado profundo em visão computacional
“Avanço na detecção de defeitos com tecnologia de IA”
- Uma tendência importante que molda o aprendizado profundo no mercado de visão computacional é a crescente adoção da detecção de defeitos com tecnologia de IA em setores como manufatura, automotivo e eletrônico, impulsionada pela necessidade de maior precisão e redução de erros humanos.
- As empresas estão aproveitando algoritmos de aprendizado profundo, computação de ponta e análises de visão em tempo real para aprimorar os processos de controle de qualidade, minimizando defeitos e melhorando a eficiência da produção
- Por exemplo, em outubro de 2023, a Cognex Corporation lançou o Sistema de Visão In-Sight 3800, com recursos de detecção de defeitos baseados em aprendizado profundo para melhorar a precisão da fabricação e agilizar a inspeção automatizada.
- Tecnologias avançadas, como detecção de anomalias orientada por IA, análise automatizada de causa raiz e manutenção preditiva estão sendo integradas em sistemas de visão computacional para otimizar a identificação de defeitos e reduzir o tempo de inatividade operacional.
- Esta tendência está revolucionando o aprendizado profundo na indústria de visão computacional, melhorando a qualidade da produção, reduzindo o desperdício e impulsionando a adoção de sistemas de inspeção visual baseados em IA, garantindo maior eficiência e custo-benefício para as empresas.
Aprendizado profundo na dinâmica do mercado de visão computacional
Motorista
“Adoção crescente de inspeção de qualidade com tecnologia de IA na manufatura”
- O mercado de aprendizado profundo em visão de máquina está testemunhando um rápido crescimento devido à crescente dependência da inspeção de qualidade com tecnologia de IA nas indústrias de manufatura, impulsionada pela necessidade de maior precisão, eficiência e detecção de defeitos
- As empresas estão integrando sistemas de visão de máquina com algoritmos de aprendizado profundo para aprimorar a inspeção visual em tempo real, reduzir erros humanos e otimizar as linhas de produção para melhor consistência e qualidade de saída.
- Por exemplo, em abril de 2024, a Siemens fez uma parceria com a NVIDIA para integrar soluções de visão computacional baseadas em IA em seus processos de fabricação, aprimorando o controle de qualidade automatizado e minimizando os defeitos de produção.
- Os sistemas de visão com tecnologia de IA estão permitindo manutenção preditiva, detecção automatizada de anomalias e classificação de defeitos em tempo real, reduzindo custos operacionais e aumentando a precisão da fabricação
- Este driver está definido para acelerar o crescimento do aprendizado profundo no mercado de visão computacional, aumentando a eficiência da produção, minimizando o tempo de inatividade e melhorando a qualidade geral do produto em vários setores.
Oportunidade
“Adoção crescente de sistemas de visão com tecnologia de IA na área da saúde”
- O mercado de aprendizado profundo em visão de máquina está pronto para uma expansão substancial à medida que o setor de saúde adota cada vez mais sistemas de visão com tecnologia de IA para imagens médicas , diagnósticos e cirurgias assistidas por robótica.
- A demanda por análise automatizada de imagens, detecção de anomalias e monitoramento de pacientes em tempo real está impulsionando o investimento em soluções de visão baseadas em aprendizado profundo para aumentar a precisão e a eficiência em procedimentos médicos
- Por exemplo, em janeiro de 2025, a GE Healthcare introduziu um sistema de imagem médica baseado em IA, aproveitando o aprendizado profundo para melhorar a detecção precoce de doenças como câncer e distúrbios neurológicos.
- Os prestadores de cuidados de saúde e as instituições de investigação estão a integrar tecnologias de visão de aprendizagem profunda em patologia, radiologia e cirurgia robótica para permitir diagnósticos de precisão e reduzir o erro humano.
- Espera-se que esta oportunidade impulsione o crescimento de longo prazo no mercado de aprendizado profundo em visão computacional, revolucionando a imagem médica, melhorando os resultados dos pacientes e promovendo avanços baseados em IA na inovação em saúde.
Restrição/Desafio
“Altos custos de implementação e complexidades de integração”
- O mercado de aprendizado profundo em visão computacional enfrenta desafios significativos devido aos altos custos de implementação e às complexidades envolvidas na integração de sistemas de visão baseados em IA em fluxos de trabalho industriais existentes.
- A necessidade de hardware especializado, treinamento extensivo de dados e poder computacional avançado torna a implantação de soluções de visão baseadas em aprendizado profundo um empreendimento caro, especialmente para pequenas e médias empresas (PMEs)
- Por exemplo, em junho de 2024, um fabricante automóvel europeu enfrentou atrasos na implementação de sistemas de inspeção de visão baseados em IA devido aos altos custos iniciais e à necessidade de requalificar os funcionários em ferramentas de automação baseadas em IA.
- Além disso, problemas de compatibilidade com sistemas legados, a falta de profissionais qualificados em IA e a necessidade de refinamento contínuo de algoritmos representam obstáculos para uma adoção contínua em vários setores.
- A superação desses desafios exigirá modelos de IA com boa relação custo-benefício, soluções de aprendizado profundo escaláveis e parcerias estratégicas para facilitar uma integração mais suave e impulsionar a adoção generalizada em aplicações industriais.
Escopo de mercado de aprendizado profundo em visão computacional
O mercado é segmentado com base na oferta, aplicação, objeto e vertical.
Segmentação |
Sub-segmentação |
Ao oferecer |
|
Por aplicação |
|
Por objeto |
|
Por Vertical |
|
Análise regional do mercado de Deep Learning em visão computacional
“A América do Norte é a região dominante no mercado de Deep Learning em Visão Computacional”
- A América do Norte possui um ecossistema de IA e automação altamente desenvolvido, acelerando a adoção de tecnologias de aprendizado profundo em aplicações de visão computacional
- Os setores industriais e de manufatura bem estabelecidos da região impulsionam a demanda por controle de qualidade automatizado, detecção de defeitos e soluções de manutenção preditiva com tecnologia de aprendizado profundo
- As principais empresas de IA e visão de máquina, juntamente com as principais instituições de pesquisa, contribuem para a inovação contínua e a implementação em larga escala de sistemas de visão baseados em aprendizado profundo.
- Esses fatores coletivamente posicionam a América do Norte como o mercado dominante, promovendo inovação, investimento e expansão sustentada na indústria de aprendizado profundo em visão computacional.
“A América do Norte deverá registar a maior taxa de crescimento”
- A crescente adoção de sistemas de controle de qualidade baseados em automação e IA em setores como manufatura, saúde e automotivo está impulsionando o crescimento do mercado
- A expansão das aplicações de aprendizagem profunda em visão computacional, incluindo detecção de defeitos, reconhecimento de objetos e manutenção preditiva, está impulsionando a demanda por soluções avançadas
- Iniciativas e investimentos governamentais em fábricas inteligentes, Indústria 4.0 e automação industrial orientada por IA estão acelerando a adoção de tecnologias de visão computacional
- Esses fatores coletivamente posicionam a América do Norte como a região de crescimento mais rápido no mercado de aprendizado profundo em visão computacional, promovendo inovação e ampla implantação em todos os setores.
Participação de mercado em aprendizado profundo em visão computacional
O cenário competitivo do mercado fornece detalhes por concorrente. Os detalhes incluem visão geral da empresa, finanças da empresa, receita gerada, potencial de mercado, investimento em pesquisa e desenvolvimento, novas iniciativas de mercado, presença global, locais e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa, lançamento de produto, abrangência e amplitude do produto e domínio da aplicação. Os pontos de dados fornecidos acima referem-se apenas ao foco das empresas em relação ao mercado.
Os principais líderes de mercado que operam no mercado são:
- Cognex Corporation (EUA)
- Intel Corporation (EUA)
- NATIONAL INSTRUMENTS CORP. (EUA)
- SICK AG (Alemanha)
- Datalogic SpA (Itália)
- STEMMER IMAGING AG INH ON (Alemanha)
- Abto Software (Ucrânia)
- Zebra Technologies Corp (EUA)
- Autonics Corporation (Coreia do Sul)
- Basler AG (Alemanha)
- Cyth Systems, Inc. (EUA)
- Euresys (Bélgica)
- IDS Imaging Development Systems GmbH (Alemanha)
- LeewayHertz (EUA)
- MVTEC SOFTWARE GMBH (Alemanha)
- Omron Corporation (Japão)
- perClass BV (Holanda)
- Qualitas Technologies (Índia)
- Visão RSIP (Israel)
- USS Vision LLC (EUA)
- Viska Automation Systems Ltd. T/A Viska Systems (Irlanda)
Últimos desenvolvimentos no mercado global de aprendizado profundo em visão computacional
- Em janeiro de 2025, a NVIDIA Corporation fortaleceu suas colaborações com importantes empresas automotivas, incluindo Toyota, Aurora e Continental, para acelerar o desenvolvimento de frotas de veículos altamente automatizados e autônomos. Ao alavancar recursos avançados de processamento visual baseados em IA, a NVIDIA visa aprimorar a segurança e a funcionalidade dos sistemas de direção autônoma, reforçando sua posição como líder em tecnologia de veículos autônomos. Espera-se que essa expansão impulsione avanços significativos em soluções de mobilidade com tecnologia de IA, moldando o futuro do transporte autônomo.
- Em maio de 2024, a Avnet, Inc. lançou o Kit de Desenvolvimento Vision-AI QCS6490 para permitir que equipes de engenharia prototipem rapidamente produtos Edge de alto desempenho com IA incorporada e recursos multicâmera. O kit é alimentado pelo módulo de computação MSC SM2S-QCS6490 SMARC, de baixo consumo de energia, baseado no processador Qualcomm QCS6490, facilitando a implantação mais rápida de soluções de visão baseadas em IA em todos os setores. Essa inovação deve acelerar a adoção de aplicações de visão baseadas em IA, melhorando a eficiência em diversos setores.
- Em maio de 2024, a Microsoft Corporation revelou o GPT-4 Turbo with Vision, um modelo de IA multimodal projetado para processar entradas de texto e imagem. Este modelo aprimora diversas aplicações, permitindo análise avançada de imagem e vídeo, geração de texto, reconhecimento óptico de caracteres (OCR) e aterramento de objetos, impulsionando a adoção da automação com tecnologia de IA em diversos setores. Espera-se que a introdução deste modelo revolucione o processamento de imagens com tecnologia de IA, aprimorando as operações comerciais e os recursos de automação.
- Em abril de 2024, a Cognex Corporation lançou o Sistema de Visão 3D In-Sight L38, integrando IA com tecnologias de visão 2D e 3D para aprimorar os processos de inspeção e medição. Ao criar imagens 2D incorporadas a dados 3D, o sistema simplifica o treinamento, melhora a precisão da detecção de características e garante resultados de inspeção consistentes, aprimorando os recursos de automação industrial. Este avanço está prestes a transformar os processos de controle de qualidade e fabricação, aumentando a precisão e a eficiência em aplicações industriais.
- Em abril de 2024, a IBM lançou a plataforma de software IBM Z IntelliMagic Vision para z/OS, uma solução de análise de desempenho para sistemas IBM Z. Com suas visualizações personalizadas e sem código e ferramentas flexíveis de análise de dados, a plataforma permite que analistas identifiquem riscos potenciais e otimizem cargas de trabalho, melhorando a eficiência e a confiabilidade das operações de TI corporativas. Este lançamento reforça o compromisso da IBM em aprimorar o desempenho de TI corporativa, garantindo maior resiliência e eficiência operacional.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.