Global Data Science Platform Market
Tamanho do mercado em biliões de dólares
CAGR :
%

![]() |
2024 –2031 |
![]() | USD 158.59 Billion |
![]() | USD 1,216.19 Billion |
![]() |
|
![]() |
|
Global Data Science Platform Market Segmentation, By Component Type (Platform, Services, Support and Maintenance, Consulting, and Deployment and Integration), Function Division (Marketing, Sales, Logistics, Finance and Accounting, Customer Support, Business Operations, and Others), Deployment Model (On-Premises and Cloud based), Organization Size (Small and Medium-sized Enterprises (SMEs), Large Enterprises), End User Application (Banking, Financial Services, and Insurance (BFSI), Telecom and IT, Retail and E-commerce, Healthcare and Life sciences, Manufacturing, Energy and Utilities, Media and Entertainment, Transportation and Logistics, Government, and Others) – Industry Trends and Forecast to 2031
Data Science Platform Market Analysis
The data science platform market is experiencing rapid growth due to the integration of advanced technologies such as artificial intelligence (AI), machine learning (ML), and cloud computing. One of the latest methods driving the market is the use of AutoML (automated machine learning) tools, which simplify the process of model creation, enabling businesses with less expertise to harness AI effectively. These platforms allow data scientists to focus on innovation, while automation handles repetitive tasks.
Cloud-based data science platforms, such as Google Cloud AI and AWS SageMaker, further promote scalability and cost-efficiency. By utilizing the cloud, businesses can access immense computational power on-demand, ensuring the rapid processing of vast datasets.
Another advancement is the adoption of collaborative tools that allow teams to work simultaneously on projects, increasing efficiency and reducing the time-to-market for AI solutions. These platforms often integrate with existing data ecosystems, making them accessible to a wide range of industries such as healthcare, finance, and retail. As organizations realize the value of data-driven insights, the demand for comprehensive data science platforms is expected to rise significantly, driving market growth.
Data Science Platform Market Size
The global data science platform market size was valued at USD 158.59 billion in 2023 and is projected to reach USD 1,216.19 billion by 2031, with a CAGR of 29.00% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
Data Science Platform Market Trends
“Rise of Automated Machine Learning (AutoML)”
One significant trend driving the growth of the data science platform market is the rise of Automated Machine Learning (AutoML). This technology simplifies and accelerates the model development process, allowing users with limited data science expertise to build predictive models. For instance, in January 2023, Science Applications International Corp. introduced the "Tenjin" data science platform, a versatile solution that supports low-code to full-code development for AI and machine learning applications. Powered by Dataiku, Tenjin facilitates the entire lifecycle of AI and ML model development, from deployment to training and automation, along with advanced data visualization tools. This platform aims to simplify complex processes, making AI accessible to a wider range of businesses.
Report Scope and Data Science Platform Market Segmentation
Attributes |
Data Science Platform Key Market Insights |
Segments Covered |
|
Countries Covered |
U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America |
Key Market Players |
IBM (U.S.), DataRobot Inc., (U.S.), apheris AI GmbH (Germany), The Digital Talent Ecosystem (U.S.), Databand (Israel), dotData (U.S.), Explorium Inc., (U.S.), Noogata (Israel), Tecton Inc., (U.S.), Spell Designs Pty Ltd (U.S.), Arrikto Inc., (U.S.), Iterative (U.S.), Google Inc (U.S.), Microsoft (U.S.), SAS Institute Inc., (U.S.), Amazon Web Services, Inc. (U.S.), The MathWorks, Inc. (U.S.), Cloudera Inc.,(U.S.), Teradata (U.S.), TIBCO Software Inc. (U.S.), ALTERYX, INC. (U.S.), RapidMiner (U.S.), Databricks (U.S.), Snowflake Inc., (U.S.), H2O.ai (U.S.), Altair Inc., (U.S.), Anaconda Inc., (U.S.), SAP SE (U.S.), Domino Data Lab Inc., (U.S.) and Dataiku (U.S.) |
Market Opportunities |
|
Value Added Data Infosets |
Além dos insights de mercado, tais como o valor de mercado, a taxa de crescimento, os segmentos de mercado, a cobertura geográfica, os participantes do mercado e o cenário de mercado, o relatório de mercado com curadoria da equipa de pesquisa de mercado da Data Bridge inclui uma análise aprofundada de especialistas , análise de importação/exportação, análise de preços, análise de consumo de produção e análise Pilstle. |
Definição de mercado de plataforma de ciência de dados
Uma plataforma de ciência de dados é um ambiente integrado que fornece ferramentas, bibliotecas e infraestruturas para os cientistas de dados desenvolverem, gerirem e executarem projetos orientados por dados. Permite aos utilizadores recolher, analisar e visualizar grandes conjuntos de dados, ao mesmo tempo que facilita a colaboração entre equipas. Estas plataformas suportam frequentemente várias linguagens de programação (como Python, R e SQL), algoritmos de aprendizagem automática e pipelines de dados para a construção e implementação eficientes de modelos. As plataformas de ciência de dados também oferecem funcionalidades como controlo de versão, automatização e escalabilidade, tornando mais fácil para as organizações tirarem partido dos insights de dados de forma estruturada e repetível para a tomada de decisões.
Dinâmica de mercado da plataforma de ciência de dados
Motoristas
- Procura por tomada de decisão baseada em dados
A crescente dependência da tomada de decisões baseada em dados é um dos principais impulsionadores do mercado das plataformas de ciência de dados. Organizações de todos os setores estão a migrar para a utilização de insights de dados para melhorar as estratégias, melhorar o envolvimento do cliente e otimizar as operações. As plataformas de ciência de dados permitem às empresas processar e analisar eficientemente grandes conjuntos de dados, levando a decisões mais precisas e informadas. Por exemplo, em outubro de 2023, a GoodData Corporation revelou a sua mais recente plataforma de análise de dados orientada por IA, concebida para melhorar os fluxos de trabalho de aprendizagem automática (ML), IA e business intelligence (BI). Esta plataforma incorpora várias características de IA generativa, incluindo um assistente virtual que fornece resumos e insights. Ao otimizar os processos de descoberta e desenvolvimento de dados, permite aos utilizadores tomar decisões informadas mais rapidamente, melhorando a eficiência e a eficácia em ambientes orientados por dados.
- Crescimento do Big Data
O aumento exponencial de dados gerados por diversas fontes, como dispositivos IoT, plataformas de redes sociais e atividades de comércio eletrónico, é um dos principais impulsionadores do mercado das plataformas de ciência de dados. Estes grandes volumes de dados estruturados e não estruturados requerem plataformas robustas para um armazenamento, processamento e análise eficientes. Por exemplo, em janeiro de 2024, a Databricks lançou uma nova plataforma de business intelligence concebida especificamente para operadores de telecomunicações e fornecedores de serviços de rede (NSPs). Esta plataforma inovadora capacita estas empresas ao fornecer uma visão abrangente das suas redes, operações e interações com os clientes. Mais importante ainda, garante a privacidade dos dados e protege a propriedade intelectual confidencial, permitindo às empresas de telecomunicações tomar decisões informadas, mantendo elevados padrões de segurança nas suas operações.
Oportunidades
- Inovação de código aberto
A inovação de código aberto melhora significativamente o mercado das plataformas de ciência de dados, ao fornecer ferramentas acessíveis que promovem a colaboração e o desenvolvimento rápido. Plataformas como o Apache Spark e o TensorFlow exemplificam esta tendência, permitindo aos cientistas de dados tirar partido de bibliotecas robustas sem elevadas taxas de licenciamento. À medida que as organizações procuram soluções económicas para a aprendizagem automática e o processamento de big data, adotam cada vez mais estas estruturas de código aberto, o que leva a um aumento das contribuições e melhorias da comunidade. Este ambiente colaborativo não só acelera o desenvolvimento de novos recursos, como também atrai um grupo maior de talentos, criando oportunidades para as empresas inovarem e manterem vantagens competitivas num cenário baseado em dados.
- Avanços em Análise Preditiva
O aumento da análise preditiva nos setores da saúde, finanças e retalho apresenta oportunidades significativas no mercado das plataformas de ciência de dados. Na área da saúde, os modelos preditivos são utilizados para prever os resultados dos doentes e otimizar os planos de tratamento, como se verifica com ferramentas como o IBM Watson Health. Nas finanças, as empresas aproveitam a análise preditiva para a pontuação de crédito e a deteção de fraudes, exemplificada pelos algoritmos de pontuação avançados da FICO. Por exemplo, em outubro de 2022, a IBM Corporation lançou a biblioteca de fitas Diamondback, uma solução de armazenamento avançada que utiliza a tecnologia LTO. Este produto inovador possui uma capacidade impressionante de até 27 petabytes (PB) de armazenamento de dados num único bastidor de servidor. O Diamondback foi concebido para satisfazer as crescentes exigências de armazenamento de dados, oferecendo escalabilidade e fiabilidade para as organizações que precisam de gerir grandes quantidades de informação de forma segura e eficiente. À medida que as organizações reconhecem o valor dos insights preditivos para a tomada de decisões, a procura por plataformas sofisticadas de ciência de dados, capazes de lidar com modelação e previsão complexas, continua a crescer, criando perspetivas de mercado lucrativas.
Restrições/Desafios
- Preocupações com a privacidade e segurança dos dados
As preocupações com a privacidade e a segurança dos dados prejudicam significativamente o mercado das plataformas de ciência de dados. À medida que as organizações dependem mais da análise de dados, enfrentam uma pressão crescente para cumprir regulamentos rigorosos, como o RGPD e o CCPA. A não conformidade pode resultar em multas pesadas e danos à reputação, levando as organizações a serem cautelosas nas suas práticas de tratamento de dados. Esta apreensão restringe a adoção de soluções avançadas de ciência de dados, uma vez que as empresas podem dar prioridade à segurança em detrimento da inovação. Além disso, a necessidade de medidas de segurança robustas pode aumentar os custos e a complexidade da implementação, impedindo ainda mais as organizações de investir em novas plataformas de ciência de dados e abrandando o crescimento global do mercado.
- Falta de profissionais qualificados
A falta de profissionais qualificados prejudica significativamente o mercado das plataformas de ciência de dados. A rápida evolução das tecnologias de ciência de dados resultou numa lacuna substancial de talentos, com muitas organizações a lutar para encontrar cientistas e analistas de dados qualificados. Esta escassez impede a utilização eficaz de plataformas avançadas de ciência de dados, levando a um baixo desempenho nas iniciativas de análise. As empresas investem frequentemente em ferramentas sofisticadas, mas não conseguem maximizar o seu potencial devido à falta de conhecimento na interpretação de dados e na obtenção de insights acionáveis. Consequentemente, este défice de talento sufoca a inovação, abranda os cronogramas dos projetos e, em última análise, limita o crescimento do mercado, uma vez que as empresas não conseguem tirar o máximo partido dos recursos da ciência de dados.
Este relatório de mercado fornece detalhes de novos desenvolvimentos recentes, regulamentos comerciais, análise de importação e exportação, análise de produção, otimização da cadeia de valor, quota de mercado, impacto dos participantes do mercado doméstico e localizado, analisa as oportunidades em termos de bolsas de receitas emergentes, alterações nas regulamentações do mercado, análise estratégica do crescimento do mercado, tamanho do mercado, crescimento do mercado das categorias, nichos de aplicação e dominância, aprovações de produtos, lançamentos de produtos, expansões geográficas, inovações tecnológicas no mercado. Para mais informações sobre o mercado, contacte a Data Bridge Market Research para obter um briefing de analista.
Âmbito de mercado da plataforma de ciência de dados
O mercado é segmentado com base no tipo de componente, divisão de funções, modelo de implementação, tamanho da organização e aplicação do utilizador final. O crescimento entre estes segmentos irá ajudá-lo a analisar segmentos de baixo crescimento nos setores e fornecerá aos utilizadores uma visão geral e informações valiosas do mercado para os ajudar a tomar decisões estratégicas para identificar as principais aplicações do mercado.
Tipo de componente
- Plataforma
- Serviços
Serviços profissionais
- Suporte e Manutenção
- Consultoria
- Implantação e Integração
Serviços Gerenciados
Divisão de funções
- Marketing
- Vendas
- Logística
- Finanças e Contabilidade
- Suporte ao cliente
- Operações comerciais
- Outros
Modelo de Implantação
- No local
- Baseado na nuvem
Tamanho da organização
- Pequenas e Médias Empresas (PME)
- Grandes Empresas
Aplicação do utilizador final
- Bancos, Serviços Financeiros e Seguros (BFSI)
- Telecomunicações e Informática
- Retalho e comércio eletrônico
- Saúde e ciências da vida
- Fabricação
- Energia e Serviços Públicos
- Media e Entretenimento
- Transporte e Logística
- Governo
- Outros
Análise regional do mercado da plataforma de ciência de dados
O mercado é analisado e são fornecidos insights e tendências sobre o tamanho do mercado por tipo de componente, divisão de funções, modelo de implementação, tamanho da organização e aplicação do utilizador final, conforme referenciado acima.
Os países abrangidos no relatório de mercado são os EUA, Canadá, México na América do Norte, Alemanha, Suécia, Polónia, Dinamarca, Itália, Reino Unido, França, Espanha, Países Baixos, Bélgica, Suíça, Turquia, Rússia, Resto da Europa na Europa , Japão , China, Índia, Coreia do Sul, Nova Zelândia, Vietname, Austrália, Singapura, Malásia, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico (APAC) na Ásia-Pacífico (APAC), Brasil, Argentina, Resto da América do Sul como uma parte da América do Sul, Emirados Árabes Unidos, Arábia Saudita, Omã, Qatar, Kuwait, África do Sul, Resto do Médio Oriente e África (MEA) como parte do Médio Oriente e África (MEA).
Espera-se que a América do Norte domine o mercado das plataformas de ciência de dados devido à presença de uma infraestrutura bem estabelecida e aos baixos custos de mão-de-obra nos países em desenvolvimento. Além disso, estima-se que os serviços pós-venda eficazes oferecidos pelos fabricantes nas economias irão acelerar ainda mais a expansão durante o período previsto.
Espera-se que a Ásia-Pacífico testemunhe um crescimento significativo durante o período previsto devido ao rápido crescimento da operação de exploração de petróleo e gás na área da região. A grande base da China para a produção de artigos eletrónicos faz com que esta contribua significativamente para a expansão do mercado regional.
A secção de países do relatório também fornece fatores individuais que impactam o mercado e alterações na regulamentação do mercado que impactam as tendências atuais e futuras do mercado. Pontos de dados como a análise da cadeia de valor a montante e a jusante, tendências técnicas e análise das cinco forças de Porter, estudos de caso são alguns dos indicadores utilizados para prever o cenário de mercado para países individuais. Além disso, a presença e a disponibilidade de marcas globais e os seus desafios enfrentados devido à grande ou escassa concorrência de marcas locais e nacionais, ao impacto de tarifas domésticas e rotas comerciais são considerados ao fornecer uma análise de previsão dos dados do país.
Quota de mercado da plataforma de ciência de dados
O cenário competitivo do mercado fornece detalhes por concorrente. Os detalhes incluídos são a visão geral da empresa, finanças da empresa, receitas geradas, potencial de mercado, investimento em investigação e desenvolvimento, novas iniciativas de mercado, presença global, localizações e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa , lançamento do produto, amplitude e abrangência do produto, aplicação domínio. Os pontos de dados fornecidos acima estão apenas relacionados com o foco das empresas em relação ao mercado.
Os líderes de mercado da plataforma de ciência de dados que operam no mercado são:
- IBM (EUA)
- DataRobot Inc., (EUA)
- apheris AI GmbH (Alemanha)
- O ecossistema de talento digital (EUA)
- Banda de dados (Israel)
- dotData (EUA)
- Explorium Inc., (EUA)
- Noogata (Israel)
- Tecton Inc., (EUA)
- Spell Designs Pty Ltd (EUA)
- Arrikto Inc., (EUA)
- Iterativo (EUA)
- Google Inc (EUA)
- Microsoft (EUA)
- SAS Institute Inc., (EUA)
- Amazon Web Services, Inc. (EUA)
- The MathWorks, Inc. (EUA)
- Cloudera Inc., (EUA)
- Teradata (EUA)
- TIBCO Software Inc. (EUA)
- ALTERYX, INC. (EUA)
- RapidMiner (EUA),
- Databricks (EUA)
- Snowflake Inc., (EUA)
- H2O.ai (EUA)
- Altair Inc., (EUA)
- Anaconda Inc., (EUA)
- SAP SE (EUA)
- Domino Data Lab Inc., (EUA)
- Dataiku (EUA)
Últimos desenvolvimentos no mercado das plataformas de ciência de dados
- Em junho de 2024, a IBM Corporation anunciou uma colaboração estratégica com a Telefónica Tech com o objetivo de impulsionar a adoção de soluções de ponta em Inteligência Artificial (IA), análise e governação de dados. Esta parceria visa satisfazer as necessidades em evolução das empresas, permitindo-lhes tirar partido de tecnologias avançadas para melhorar a tomada de decisões, a eficiência operacional e as experiências melhoradas dos clientes num ambiente empresarial cada vez mais complexo.
- Em março de 2024, a Microsoft revelou uma colaboração com a NVIDIA focada em melhorar a inovação em saúde e ciências biológicas através de IA em nuvem e tecnologias de computação acelerada. Esta parceria visa revolucionar os cuidados aos doentes através da agilização do acesso à medicina de precisão e aos diagnósticos baseados em IA. Espera-se que a iniciativa promova um avanço significativo no setor da saúde, fornecendo soluções mais rápidas e precisas para diagnosticar e tratar os doentes, melhorando, em última análise, os resultados em saúde.
- Em janeiro de 2023, a Science Applications International Corp. lançou a plataforma de ciência de dados "Tenjin", uma solução versátil que suporta o desenvolvimento de low-code a full-code para aplicações de IA e machine learning. Desenvolvido pela Dataiku, o Tenjin facilita todo o ciclo de vida do desenvolvimento de modelos de IA e ML, desde a implementação até à formação e automatização, juntamente com ferramentas avançadas de visualização de dados. Esta plataforma visa simplificar processos complexos, tornando a IA acessível a um leque mais vasto de empresas
- Em outubro de 2022, a IBM Corporation lançou a biblioteca de fitas Diamondback, uma solução de armazenamento avançada que utiliza a tecnologia LTO. Este produto inovador possui uma capacidade impressionante de até 27 petabytes (PB) de armazenamento de dados num único bastidor de servidor. O Diamondback foi concebido para satisfazer as crescentes exigências de armazenamento de dados, oferecendo escalabilidade e fiabilidade para as organizações que precisam de gerir grandes quantidades de informação de forma segura e eficiente.
- Em junho de 2022, o SAS Institute expandiu as suas capacidades ao adquirir a Kamakura Corporation, melhorando o seu portefólio com soluções de risco integradas. Esta aquisição centra-se na prestação de serviços profissionais especializados em Gestão de Ativos e Passivos (ALM) e outros setores financeiros, incluindo a banca. Ao combinar recursos e experiência, a SAS pretende oferecer soluções abrangentes que abordem desafios complexos de gestão de risco, ajudando as organizações a tomar decisões financeiras informadas e a navegar pelas incertezas do mercado de forma eficaz.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.