>Mercado Europeu de Redes Neurais de Aprendizagem Profunda (DNNs), por Componente (Hardware, Software e Serviços), Aplicação (Reconhecimento de Imagem, Processamento de Linguagem Natural, Reconhecimento de Fala, Data Mining), Utilizador Final (Bancos, Serviços Financeiros e Seguros (BFSI), TI e Telecomunicações, Saúde, Retalho, Automóvel, Manufatura, Aeroespacial e Defesa, Segurança e outros), País (França, Alemanha, Itália, Espanha, Turquia, Bélgica, Rússia, Reino Unido, Holanda e Resto da Europa ) - Tendências e previsões do setor para 2028.
Análise de mercado e insights: Mercado europeu de redes neuronais de aprendizagem profunda (DNNs)
A Data Bridge Market Research analisa que o mercado de Redes Neurais de Aprendizagem Profunda (DNNs) apresentará um CAGR de 20,9% para o período de previsão de 2021-2028 e deverá atingir o valor de mercado de 357,23 milhões de dólares até 2028.
As redes neuronais de aprendizagem profunda (DDNs) são uma tecnologia baseada em aprendizagem automática utilizada principalmente para decidir, diagnosticar a previsão de determinação, chamadas e problemas com suporte num design de processo bem definido. Estas tecnologias são adotadas em toda a unidade em diversas aplicações, tais como segurança de PC, reconhecimento de voz, reconhecimento de imagem e vídeo, deteção de falhas industriais, medicina médica e finanças.
O rápido desenvolvimento e crescimento na qualidade da ciência da computação, a rápida adoção de tecnologias mais recentes em lotes e, portanto, o rápido aumento na variedade de dados dos utilizadores por diversas organizações, unidade de área prevista para impulsionar o mercado. Prevê-se que a crescente procura por serviços de computação em nuvem duele com qualquer expansão. Espera-se que estes fatores impulsionem o mercado e atuem como motores de crescimento.
A digitalização universalmente crescente está a impulsionar o mercado mundial de redes neuronais de aprendizagem profunda. A transformação digital ajuda a adaptar a tecnologia avançada que proporciona o benefício de recolher a informação, ao passo que a informação é uma parte crítica e essencial da inteligência factícia. As informações ajudam o mercado europeu de redes neuronais de aprendizagem profunda (DNNs) a reconhecer o padrão e a prever.
No entanto, a falta de conhecimento sobre o elemento, as complexidades na implementação de algoritmos e hardware de integração e, por conseguinte, a falta de unidade de área profissional virtual previam restringir o mercado.
Este relatório de mercado sobre redes neuronais de aprendizagem profunda (DNNs) fornece detalhes de novos desenvolvimentos recentes, regulamentos comerciais, análise de importação e exportação, análise de produção, otimização da cadeia de valor, quota de mercado, impacto dos participantes do mercado doméstico e localizado, analisa as oportunidades em termos de bolsas de receitas emergentes. , alterações nas regulamentações do mercado, análise estratégica do crescimento do mercado, tamanho do mercado, crescimento do mercado da categoria, nichos de aplicação e domínio, aprovações de produtos, lançamentos de produtos, expansões geográficas, inovações tecnológicas no mercado. Para obter mais informações sobre a pesquisa de mercado de ponte de dados de contacto de mercado de redes neuronais de aprendizagem profunda (DNNs) para um resumo de analista, a nossa equipa irá ajudá-lo a tomar uma decisão de mercado informada para alcançar o crescimento do mercado.
Âmbito do mercado e dimensão do mercado de redes neuronais de aprendizagem profunda da Europa (DNNs)
O mercado das redes neuronais de aprendizagem profunda (DNNs) está segmentado com base nos componentes, aplicações e utilizador final. O crescimento entre os diferentes segmentos ajuda-o a obter o conhecimento relacionado com os diferentes fatores de crescimento que devem prevalecer em todo o mercado e a formular diferentes estratégias para ajudar a identificar as principais áreas de aplicação e a diferença no seu mercado-alvo.
- Com base nos componentes, o mercado das redes neuronais de aprendizagem profunda (DNNs) está dividido em hardware, software e serviços.
- Com base na aplicação, o mercado das redes neuronais de aprendizagem profunda (DNNs) está segmentado em reconhecimento de imagem, reconhecimento de fala, processamento de linguagem natural e data mining.
- Com base no utilizador final, o mercado de redes neuronais de aprendizagem profunda (DNNs) na Europa está dividido em banca, serviços financeiros e seguros (BFSI), tecnologia da informação e telecomunicações, saúde, retalho, automóvel, manufatura, aeroespacial e defesa, segurança e outros.
Análise ao nível do país do mercado de redes neuronais de aprendizagem profunda (DNNs)
O mercado das redes neuronais de aprendizagem profunda (DNNs) é analisado e o tamanho do mercado, as informações de volume são fornecidas por país, componentes, aplicações e utilizador final, como mencionado acima.
Os países abordados no relatório de mercado sobre redes neuronais de aprendizagem profunda (DNNs) são França, Alemanha, Itália, Espanha, Turquia, Bélgica, Rússia, Reino Unido, Países Baixos e Resto da Europa.
A secção do país do relatório sobre o mercado de redes neuronais de aprendizagem profunda (DNNs) também fornece fatores individuais de impacto no mercado e alterações na regulamentação do mercado nacional que impactam as tendências atuais e futuras do mercado. Pontos de dados como volumes de consumo, localizações e volumes de produção, análise de importação e exportação, análise de tendências de preços, custo das matérias-primas, análise da cadeia de valor a jusante e a montante são alguns dos principais indicadores utilizados para prever o cenário de mercado para países individuais. Além disso, são considerados a presença e disponibilidade de marcas globais e os desafios enfrentados devido à grande ou escassa concorrência de marcas locais e nacionais, o impacto das tarifas nacionais e das rotas comerciais, ao mesmo tempo que se fornece uma análise de previsão dos dados do país.
Análise da quota de mercado das redes neuronais de aprendizagem profunda (DNNs) do cenário competitivo
O panorama competitivo do mercado das redes neuronais de aprendizagem profunda (DNNs) fornece detalhes por concorrente. Os detalhes incluídos são a visão geral da empresa, finanças da empresa, receitas geradas, potencial de mercado, investimento em investigação e desenvolvimento, novas iniciativas de mercado, presença global, localizações e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa , lançamento de produto, largura e amplitude do produto, aplicação domínio. Os dados acima referidos estão apenas relacionados com o foco das empresas no mercado das redes neuronais de aprendizagem profunda (DNNs).
Os principais players abrangidos no relatório de mercado de redes neuronais de aprendizagem profunda (DNNs) são a análise ALYUDA, LLC, ALPHABET INC., IBM, Neural Technologies restricted, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm Technologies , Inc. ., Intel Corporation, Amazon internet Services, Inc., Microsoft, GMDH LLC., Sensory INC., Ward Systems cluster, Inc., Xilinx Inc., Starmind entre outros. Os analistas DBMR compreendem os pontos fortes competitivos e fornecem análises competitivas para cada concorrente em separado.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.