COVID-19 Impact on Pharmaceutical Packaging in Chemicals and Materials Industry

Pesquisadores acrescentam ao conhecimento a bioatividade de um milhão de moléculas usando aprendizado de máquina profundo

  • Sem categoria
  • 14 de setembro de 2021

Uma equipe de pesquisadores da Bioinformática Estrutural e Biologia de Rede do IRB Barcelona desenvolveu uma ferramenta que prevê a atividade biológica de compostos químicos, que é a chave para avaliar seu potencial terapêutico. Os pesquisadores usaram redes neurais artificiais para obter dados experimentais de um milhão de compostos e desenvolveram diversas ferramentas para avaliar cada tipo de molécula. A equipe de Bioinformática Estrutural e Biologia de Rede, liderada pelo Dr. Patrick Aloy, pesquisador do ICREA, usou modelos computacionais de aprendizado de máquina profundo para completar a coleta de informações de atividade biológica de cerca de 1 milhão de moléculas e introduziu uma ferramenta para prever a atividade biológica de qualquer molécula, mesmo quando os dados experimentais não estão disponíveis.

Este novo método é baseado no Chemical Checker, que é de longe o maior banco de dados de perfis de bioatividade para medicamentos falsificados desenvolvido pelo mesmo laboratório e lançado em 2020. O banco de dados coleta informações de 25 áreas bioativas para cada molécula. Essas áreas estão relacionadas à estrutura química da molécula, ao alvo com o qual ela interage e às alterações que causa em nível clínico ou celular. Contudo, para a maioria dos compostos, esta informação detalhada sobre o mecanismo de ação está incompleta. Isto significa que, para um determinado composto, pode haver uma ou duas áreas de informação biologicamente activas disponíveis, mas não todas 25. Com esta nova descoberta em desenvolvimento, os investigadores comparariam todas as informações experimentais disponíveis com técnicas profundas de aprendizagem automática para completar todos os perfis de actividade. para todos os compostos, desde o nível químico ao clínico.

A nova ferramenta também nos permite prever o espaço de atividade biológica de novas moléculas, o que é essencial para o processo de descoberta de medicamentos, pois podemos selecionar os candidatos mais adequados e descartar aqueles que não funcionam por algum motivo ou por outros motivos.