A Inteligência Artificial, ou IA, está agora a ser utilizada em quase todos os sectores e as pessoas dependem muito da aprendizagem automática e da inteligência artificial, uma vez que reduzem grande parte da carga de trabalho. A indústria de chips está crescendo muito rapidamente e sua produção também está crescendo muito rapidamente porque muitas indústrias a utilizam em larga escala. Atualmente, os chips de computador são fabricados usando um tipo especial de tecnologia chamada deposição de camada atômica (ALD), que tem a capacidade de criar filmes tão finos quanto a espessura de um átomo. Essa tecnologia é muito utilizada para desenvolver dispositivos semicondutores, mas também tem aplicações em baterias de lítio, células solares e outras áreas relacionadas à energia.
Hoje, os fabricantes confiam cada vez mais na ALD para produzir novos tipos de filmes, mas leva tempo para descobrir como ajustar o processo para cada novo material. Parte do problema é que os pesquisadores usam principalmente tentativa e erro para determinar as condições ideais de cultivo. No entanto, um estudo publicado recentemente, um dos primeiros nesta área científica, sugere que a utilização da inteligência artificial (IA) pode ser mais eficiente. No estudo ACS Applied Materials and Interfaces, pesquisadores do Laboratório Nacional Argonne do Departamento de Energia do USD (DOE) descrevem várias abordagens baseadas em IA para a otimização autônoma de processos AML. O seu trabalho descreve os pontos fortes e fracos relativos de cada abordagem, bem como insights que podem ser usados para desenvolver novos processos de forma mais eficiente e económica. "Todos esses algoritmos fornecem uma maneira muito mais rápida de convergir para combinações ideais porque você não perde tempo colocando uma amostra no reator, retirando-a, fazendo medições, etc., como faria normalmente hoje, um loop em tempo real que conectado ao reator", disse o cientista sênior de materiais da Argonne, Angel YanguasGil, coautor do estudo.