Visão geral
Ao empregar algoritmos em vez de humanos para criar modelos de aprendizagem, a aprendizagem automática de máquinas (AML) está a ajudar a diminuir numerosos processos repetitivos e tediosos, incluindo a seleção de parâmetros e a limpeza de dados. O processo de formulação e teste de hipóteses continuará devido ao aprendizado de máquina, um componente da ciência de dados. O objetivo do autoML é automatizar esses processos para encontrar o algoritmo ideal dentro da gama de recursos, algoritmos e hiperparâmetros acessíveis. Espera-se que a automação inteligente de processos repetitivos do fluxo de trabalho de ML seja facilitada pelo autoML. Isto permite que recursos de alto valor passem do trabalho monótono para a análise e avaliação dos modelos de melhor desempenho que oferecem valor. Como resultado, o tempo necessário para produzir modelos e soluções baseadas neles será significativamente reduzido.
Embora os sistemas AutoML sejam capazes de produzir modelos preditivos com rapidez suficiente para atingir um desempenho quase ideal, seu alcance ainda é limitado e sua promessa total permanece não concretizada. Embora o AutoML esteja se tornando cada vez mais predominante na área de engenharia e preparação de dados, ainda existem alguns aplicativos altamente dependentes de domínio onde é mais uma arte do que engenharia. O AutoML desempenhará um papel significativo na aceleração da adoção de soluções baseadas em ML, pois é um tópico de pesquisa ativo que está fazendo grandes progressos (com vários participantes enfrentando os desafios existentes na automatização do processo completo de desenvolvimento de modelos).
Desafios do cliente
O cliente queria analisar as oportunidades e desafios em relação ao aprendizado de máquina automatizado (AML). O principal objetivo do cliente é alinhar suas ofertas de soluções com as futuras demandas dos clientes para melhor tomada de decisões, baixo custo, maior eficiência, inovação e obter vantagem competitiva permanecendo na vanguarda dos avanços tecnológicos.
Seguem os requisitos solicitados pelo cliente:
- Tamanho total do mercado endereçável (TAM) e taxa de crescimento anual em nível regional e nacional
- Tendências tecnológicas atuais e futuras, juntamente com os desafios enfrentados durante a implementação
- Análise comparativa da empresa entre os principais e futuros players, incluindo participação de mercado, receita rastreável, iniciativas estratégicas, adoção tecnológica, critérios de seleção de fornecedores e outros
- Estratégia de investimento e financiamento por diferentes atores
- Oportunidades de mercado e avaliação de atratividade
- Aplicações emergentes de aprendizado de máquina automatizado (AML)
- Requisitos regulatórios e conformidade em nível nacional
Abordagem DBMR/Metodologia de Pesquisa
A DBMR conduziu uma análise abrangente do cenário do mercado, identificando tendências relevantes e fornecendo insights acionáveis para orientar o cliente. Seguimos o modelo tripé para analisar e validar dados para fornecer insights valiosos com base nas necessidades do cliente. A abordagem ou metodologia de pesquisa do DBMR para analisar e estimar o aprendizado de máquina automatizado (AML) é explicada abaixo:
Nossa abordagem envolve o uso de metodologias de pesquisa primárias e secundárias para estimar, analisar e validar os dados.
O DBMR conduziu pesquisas secundárias e primárias para métodos top-down e bottom-up para análise e validação de dados. Esta abordagem foi utilizada para aceder a dados qualitativos e quantitativos para cada segmento mencionado em dados globais, regionais e a nível nacional.
- Pesquisa secundária composta por dados publicados por diferentes associações governamentais, publicações certificadas, apresentações para investidores, relatórios anuais arquivados na SEC, site da empresa, periódicos, white papers e artigos de autores reconhecidos e outros.
- A pesquisa primária inclui entrevistas aprofundadas com vários entrevistados primários por meio de ligações não solicitadas, LinkedIn, e-mail e outros, com os principais participantes do setor, especialistas no assunto (PMEs), executivos de nível C dos principais players do mercado e consultores do setor para validar informações qualitativas e quantitativas. Isso é basicamente realizado por nossa equipe primária dedicada e por indivíduos (terceiros) presentes no local. Além disso, preparamos até um questionário exaustivo e um guia de discussão que incorpora pontos de dados estruturados e não estruturados, a fim de conduzir uma abordagem baseada em discussão.
A metodologia acima foi seguida para analisar as necessidades do cliente:
- O tamanho do mercado foi derivado considerando a abordagem de cima para baixo e de baixo para cima
- Análise Competitiva: Análise da empresa com base em receitas rastreáveis, ofertas de soluções, pontos fortes e fracos, participação de mercado, escopo geográfico, iniciativas estratégicas e investimento e financiamento, entre outros, para identificar fornecedores-chave, fornecedores potenciais, disruptores de mercado e participantes de nicho para ganhar competitividade vantagem
- Fatores como motivadores, restrições, oportunidades e desafios que afetam o mercado geral também foram estudados
- Impacto de fatores internos e externos, nomeadamente questões de compatibilidade e complexidade, presença de tecnologia substituta, ambiente regulamentar e cooperação, COVID-19 e guerra Rússia-Ucrânia, tanto no lado da procura como no lado da oferta
- Também foi realizada uma avaliação minuciosa do cenário regulatório, juntamente com uma pesquisa aprofundada para analisar potenciais clientes para este mercado. Além disso, a estreita colaboração com as partes interessadas do cliente nos ajuda a identificar aplicações específicas ou casos de uso onde este mercado poderia trazer valor significativo
Assim, seguindo a abordagem acima mencionada, as percepções de mercado foram fornecidas ao cliente em conformidade.
Solução de negócio
A seguir estão as soluções fornecidas ao analisar o mercado de soluções de aprendizado de máquina automatizado (AML):
- O tamanho do mercado e o CAGR da solução Automated Machine Learning (AML) em nível global, regional e nacional foram fornecidos para compreender o potencial de mercado para cada segmento
- A análise detalhada sobre a Aprendizagem Automática de Máquinas (AML), juntamente com as suas tendências de implementação, tais como normalização de dados, limpeza de dados e transformação de dados, foi fornecida a nível nacional. AML ajudará na minimização de custos, resultados mais rápidos (análise de dados) e tomada de decisões, operações simplificadas com pré-formação melhorada e mais vantagem competitiva.
- A análise comparativa da empresa foi compartilhada em termos de perfil da empresa, posicionamento e grade de aplicação, cenário da empresa, SWOT, iniciativas estratégicas e outros, a fim de identificar a concorrência no mercado e obter vantagem competitiva.
- Também foram fornecidos insights sobre avanços tecnológicos, incluindo computação baseada em nuvem, IA, robótica e outros, juntamente com outras oportunidades e desafios de mercado que impactam o mercado geral. Foi testemunhado que o modelo em nuvem é mais fácil de acessar, mais escalável e flexível do que o modelo local. Além disso, este é um modelo econômico, pois oferece um modelo pré-pago, portanto, será muito útil para todas as organizações, especialmente para pequenas e médias empresas.
- Na presença regional, a América do Norte conta com participação máxima de mercado devido à presença de empresas líderes que atendem à demanda de implantação de aprendizado de máquina em vários setores de usuários finais, incluindo BFSI, saúde e varejo, entre outros.
Impacto nos negócios
O cliente teve uma visão clara sobre a competitividade do mercado, a implementação tecnológica futura e as etapas/planos estratégicos que o ajudarão a atender usuários finais proeminentes em diferentes países. A empresa melhorou suas taxas de conversão por meio de sua mais recente oferta automatizada, que fornece a solução mais eficaz em diferentes pontos da jornada do comprador.
Conclusão
A Data Bridge Market Research forneceu insights aprofundados relacionados ao mercado de aprendizado de máquina automatizado (AML) para atender a cada requisito. Somando-se a isso, as informações factuais e consolidadas do relatório ajudarão o cliente a avaliar o crescimento da empresa em termos de penetração de tecnologia e também poderão ser utilizadas para tomada de decisões e planejamento futuro. Além disso, o cliente ainda pode acessar/capturar oportunidades de negócios a partir das informações dos relatórios.