Artigos

19 de dezembro de 2022

Transformação da descoberta de medicamentos por meio de inteligência artificial

Recentemente, o uso da inteligência artificial (IA) está aumentando em ritmo acelerado. Quase em todos os campos, o uso da IA ​​está aumentando. Com sua adaptação, muitas coisas estão ficando mais suaves. À medida que o entusiasmo em torno da IA ​​se acelerou, os grandes intervenientes no mercado e comerciantes têm lutado para promover a forma como os seus produtos e serviços utilizam a IA. A inteligência artificial é a recriação dos processos de inteligência humana por máquinas, principalmente através de sistemas informáticos. Normalmente, o que eles chamam de IA é simplesmente um componente da IA, como o aprendizado de máquina. A IA requer uma combinação de hardware e software para escrever e treinar algoritmos de aprendizado de máquina. Algumas linguagens de programação semelhantes à IA, como Python, R e Java, são populares.

Nossa equipe DBMR investigou o mercado de software de operacionalização de aprendizado de máquina e testemunhou que a América do Norte domina o mercado de software de operacionalização de aprendizado de máquina durante o período de previsão de 2022-2029 e continuará a florescer sua tendência de domínio durante o período de previsão devido à presença de grandes principais atores e aumento do número de inovações técnicas nesta região. Espera-se que o mercado apresente um CAGR de 44,7% para o período de previsão de 2022-2029.

Para saber mais sobre o estudo, acesse: https://www.databridgemarketresearch.com/pt/reports/global-machine-learning-operacionalization-software-market

História da IA

Embora a IA tenha se tornado mais prevalente recentemente devido ao aumento dos volumes de dados, algoritmos avançados e melhorias no poder computacional e no armazenamento, o termo foi introduzido em 1956. Naquela época, eles exploraram assuntos como resolução de problemas e métodos simbólicos. Na década de 1960, o Departamento de Defesa dos EUA teve um interesse genuíno neste campo e começou a treinar computadores para imitar o raciocínio humano básico. Por exemplo, a Agência de Projetos de Pesquisa Avançada de Defesa (DARPA) concluiu os projetos de mapeamento de ruas na década de 1970. Este trabalho inicial construiu o caminho para a automação e o raciocínio formal visíveis nos computadores de hoje, incluindo sistemas de apoio à decisão e sistemas de pesquisa inteligentes concebidos para complementar e melhorar as capacidades humanas.

Como a IA está mudando nosso mundo

A IA está abençoando nossas vidas com vantagens significativas, como recomendações de pesquisa online, chatbots, assistentes de voz e muito mais. A cada dia que passa, ele está se tornando parte integrante de nossas vidas. A IA terá enormes benefícios no futuro, pois levará a taxas de produção mais elevadas e a uma maior produtividade em diversos setores. Nos tempos atuais e também no futuro próximo, a automação alimentada pela inteligência artificial é demorada. Horas de trabalho manual podem ser automatizadas. É aplicável em qualquer lugar. Ele pode ser usado em qualquer lugar, prevendo o trânsito ou as condições climáticas. O uso da automação em IA é um dos maiores benefícios entre outros.

Vantagens da Inteligência Artificial

Pharmaceutical Market of AI at a Glance

  • Redução do erro humano

A inteligência artificial é benéfica na redução do chamado “erro humano”. Os humanos estão fadados a cometer erros, mas esse não é o caso dos sistemas informáticos. Os computadores não cometem esses erros se forem programados corretamente. A IA é realizada de forma benéfica, aplicando informações previamente coletadas por meio de um determinado conjunto de algoritmos. Assim, os erros são minimizados neste aspecto e a possibilidade de um maior grau de precisão torna-se maior.

  • Assume riscos em vez de humanos

É possível superar várias restrições arriscadas dos humanos com a ajuda de um robô de IA que, por sua vez, pode fazer as coisas difíceis para nós, e esta é uma das vantagens mais significativas da inteligência artificial.

Por exemplo, se voltarmos e recordarmos a explosão da central nuclear de Chernobyl, na Ucrânia, não existiam naquela altura robôs alimentados por IA que pudessem ajudar-nos a minimizar o efeito da radiação naquela situação; Os robôs de IA poderiam ter sido um salvador para a enorme multidão, minimizando o fogo. Os robôs de IA podem ser usados ​​em casos em que a intervenção pode ser perigosa.

  • Disponibilidade total

Se deixarmos de lado os intervalos, um ser humano médio trabalhará aproximadamente 4–6 horas diárias. Trabalhar o dia todo fica difícil e impossível para os humanos. Manter o equilíbrio entre vida pessoal e profissional, lidar com responsabilidades pessoais e a tediosa pressão do trabalho é difícil. Às vezes, algum trabalho é essencial e precisa ser concluído em um prazo específico, mas às vezes é impossível. Usando a IA, podemos fazer as máquinas funcionarem 24 horas por dia, 7 dias por semana, sem interrupções, e elas nem ficam entediadas, ao contrário dos humanos.

  • Auxilia na pesquisa

A IA permite que os pesquisadores superem o grande volume de dados de diversas fontes. Com dados em tempo real, a investigação pode beneficiar do vasto conjunto de informações disponíveis, desde que sejam facilmente traduzidas. Institutos de investigação médica, como o Laboratório de Dados sobre o Cancro Infantil, estão a desenvolver software útil para que os profissionais de saúde possam orientar melhor as recolhas de dados alargadas. A IA também tem sido amplamente utilizada para avaliar e detectar sintomas para prevenir a progressão da doença. Soluções de telessaúde estão sendo executadas para acompanhar o progresso dos pacientes, recuperar dados vitais de diagnóstico e auxiliar na informação da população em redes compartilhadas.

  • Reduza o estresse do médico

De acordo com alguns relatórios de investigação mais recentes, mais de metade dos médicos primários sentem-se stressados ​​devido às pressões dos prazos e a outros factores do local de trabalho. A IA ajuda a agilizar procedimentos, automatizar funções, compartilhar dados instantaneamente e organizar operações, o que geralmente ajuda os médicos a evitar malabarismos. No entanto, a IA pode ajudar em operações mais demoradas, explicando diagnósticos, por exemplo, os profissionais médicos podem sentir algum alívio do stress."

  • Cirurgias mais seguras

Os cirurgiões obtêm um maior nível de habilidade para operar em espaços pequenos que, de outra forma, poderiam exigir cirurgia aberta. A IA está ajudando nesse sentido, encontrando seu lugar adequado na robótica da saúde, contribuindo para sua necessidade adequada em cirurgia. Os robôs podem ser mais precisos em torno de órgãos e tecidos sensíveis, reduzir o risco de infecção, dor pós-operatória e reduzir a perda de sangue. A cirurgia robótica envolve mais vantagens, como menos cicatrizes e tempos de recuperação mais curtos devido às incisões menores necessárias. Por exemplo, o Centro Médico da Universidade de Maastricht, na Holanda, utilizou um robô assistido por IA em 2017 para suturar pequenos vasos sanguíneos, alguns maiores que 0,03 milímetros. O robô é manuseado e gerenciado por um cirurgião cujos movimentos manuais são convertidos em ações precisas executadas pelas mãos robóticas.

Nossa equipe DBMT investigou o mercado de cirurgia robótica ginecológica e testemunhou a América do Norte dominando o mercado de cirurgia robótica ginecológica devido à crescente demanda por cirurgia minimamente invasiva entre a população da região. Espera-se que a Ásia-Pacífico testemunhe um crescimento significativo durante o período de previsão devido à crescente conscientização sobre a saúde das mulheres e os gastos com saúde na região. Alguns dos principais players que operam no mercado de cirurgia robótica ginecológica são BOWA-electronic GmbH & Co. KG, Prima Medical, XCELLANCE Medical Technologies, ATMOS MedizinTechnik GmbH & Co. , Parkell, Inc.

Para saber mais sobre o estudo, acesse: https://www.databridgemarketresearch.com/pt/reports/global-gynecology-robotic-surgery-market

  • Aumento dos cuidados de prevenção

A IA e o aprendizado de máquina auxiliam na prevenção e no gerenciamento de doenças infecciosas. A plataforma de inteligência de surtos, Blue Dot, ajuda a analisar passagens aéreas e rotas de voo para uma previsão precisa da trajetória da COVID-19 de Wuhan a Bangkok, Seul e Taipei. Da mesma forma, os sistemas habilitados para IA podem ajudar os médicos a detectar a propagação de doenças quando os pacientes entram em uma sala de emergência com um diagnóstico rápido para permitir procedimentos eficazes de isolamento e quarentena.

  • Reduza os custos gerais

A IA ajuda a reduzir muito o tempo consumido na execução de processos específicos e o custo dos processos. Por exemplo, a IA pode analisar milhões de imagens para detectar sinais da doença. Ele elimina o caro trabalho manual envolvido. Os pacientes são atendidos de forma mais rápida e eficaz, impondo diversas vantagens como a diminuição das internações, do tempo de espera e da necessidade de leitos.

Um estudo recente previu economias substanciais de custos em diversas áreas da automação de IA, que são:

  • Redução de erros de dosagem – US$ 16 bilhões
  • Cirurgia assistida por robô – US$ 40 bilhões
  • Assistência ao fluxo de trabalho administrativo – US$ 18 bilhões
  • Assistentes de enfermagem virtuais – US$ 20 bilhões
  • Detecção de fraude – US$ 17 bilhões

Nossa equipe DBMR investigou o mercado de robótica médica minimamente invasiva, sistemas de imagem e visualização e instrumentos cirúrgicos e testemunhou que o mercado será responsável por US$ 91,22 bilhões até 2028 e crescerá a um CAGR de 8,6% no período de previsão acima mencionado. A região da América do Norte lidera o mercado de robótica médica minimamente invasiva, sistemas de imagem e visualização e instrumentos cirúrgicos devido à alta taxa de lesões acidentais da região e à grande população geriátrica. Espera-se que a Ásia-Pacífico se expanda a uma taxa de crescimento significativa durante o período previsto de 2021 a 2028 devido aos acidentes rodoviários, ao aumento da população geriátrica no Japão e na China, e espera-se que a economia emergente promova o surgimento de procedimentos MIS nesta região específica. .

Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-minimally-vasive-medical-robotics-imaging-visualization-systems-surgical-instruments-market

IA no campo da saúde

O enorme envolvimento da IA ​​no desenvolvimento de um produto farmacêutico confere-lhe um desenho racional de medicamentos; ajuda na tomada de decisões; compreende a terapia certa para um paciente, incluindo medicamentos personalizados; e gerencia os dados clínicos gerados e usados ​​para o desenvolvimento futuro de medicamentos. Por exemplo, E-VAI é uma plataforma de IA analítica e de tomada de decisão desenvolvida pela Eularis, que usa algoritmos de aprendizado de máquina para criar roteiros analíticos baseados em concorrentes, principais partes interessadas e que atualmente detêm participação de mercado para prever os principais impulsionadores nas vendas de farmacêutica, o que ajuda os executivos de marketing a destinar recursos para o máximo ganho de participação de mercado e também lhes permite saber onde fazer investimentos.

A IA está desempenhando um papel vital na descoberta de medicamentos. A IA pode reconhecer compostos atingidos e líderes, fornecer uma validação mais rápida do alvo do medicamento em um curto espaço de tempo e otimizar o design da estrutura do medicamento. Possui amplas aplicações em diversos aspectos da descoberta de medicamentos. É explicado abaixo:

Pharmaceutical Market of AI at a Glance

Apesar das vantagens enfrentadas pela IA, ela enfrenta alguns desafios significativos em termos de dados, como a escala, o crescimento, a diversidade e a incerteza dos dados. Os conjuntos de dados disponíveis para o desenvolvimento de medicamentos em diversas empresas farmacêuticas podem envolver milhões de compostos e ferramentas convencionais de ML que não conseguem lidar com tais problemas.

Por exemplo, um modelo computacional baseado na relação estrutura-atividade quantitativa (QSAR) pode prever um grande número de compostos ou parâmetros físico-químicos simples, como log P ou log D, em um curto espaço de tempo. Além disso, os modelos baseados em QSAR também enfrentam sérios problemas, como erros de dados experimentais em conjuntos de treinamento, pequenos conjuntos de treinamento e falta de validações experimentais.

Houve uma introdução de numerosos métodos in silico e compostos de tela virtual de espaços químicos virtuais, que, combinados com a estrutura e abordagens baseadas em ligantes, proporcionam uma melhor análise de perfil, eliminação mais rápida de compostos não-chumbo e seleção de moléculas de fármacos com despesas reduzidas. Algoritmos de design de medicamentos, como matrizes de Coulomb e reconhecimento de impressões digitais moleculares, consideram os perfis físicos, químicos e toxicológicos para ajudar na seleção de um composto principal.

Nossa equipe DBMR investigou o mercado de descoberta de medicamentos in-silico e testemunhou que a região da América do Norte lidera o mercado de descoberta de medicamentos in-silico devido aos rápidos avanços tecnológicos, à forte presença de fornecedores fortes e à presença de uma grande população de pacientes que sofrem de várias doenças crônicas e doenças infecciosas. Espera-se que a Ásia-Pacífico se expanda a uma taxa de crescimento significativa devido ao aumento do número de académicos e à extensa investigação sobre cancro e diabetes. Além disso, espera-se que o aumento do alto crescimento na área de identificação de biomarcadores e o foco na redução das taxas de readmissão e erros médicos contribuam para o crescimento do mercado global.

Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-in-silico-drug-discovery-market

Lista de ferramentas de IA usadas na descoberta de medicamentos

Várias ferramentas de IA são amplamente utilizadas na descoberta de medicamentos. Várias ferramentas baseadas na web, como LimTox, admetSAR, Toxtree e pkCSM estão disponíveis para ajudar a reduzir o custo de muitos ensaios diferentes. As abordagens avançadas baseadas em IA procuram principalmente as semelhanças dos compostos ou prevêem a toxicidade do composto com base nas características de entrada. Outro exemplo de ferramenta é o eToxPred, que ajuda a estimar a toxicidade dos compostos e a viabilidade de síntese de muitas pequenas moléculas orgânicas com precisão de até 72%. Muitas outras ferramentas também estão presentes que auxiliam na previsão da toxicidade do composto. Muitas vezes, alguns dos medicamentos aprovados pela FDA apresentam eventos adversos graves que precisam ser previstos o mais cedo possível; essas ferramentas de IA são usadas nesse sentido. As ferramentas de IA são uma ampla variedade de conjuntos, mas mencionamos aqui algumas das ferramentas:

Pharmaceutical Market of AI at a Glance

Visão geral do mercado farmacêutico de IA

Muitas empresas farmacêuticas estão migrando para a IA para reduzir os custos financeiros e as chances de falhas associadas aos experimentos. Houve um aumento no mercado de IA de US$ 200 milhões em 2015 para US$ 700 milhões em 2018, e prevê-se que atinja até US$ 5 bilhões até 2024. Espera-se que a IA revolucione os setores farmacêutico e médico e está projetada para um crescimento de 40%. crescimento de 2017 a 2024. Muitas empresas farmacêuticas fizeram grandes investimentos e continuam a investir em inteligência artificial e uniram-se a várias empresas de IA para desenvolver ferramentas essenciais de saúde. Por exemplo, houve uma colaboração da DeepMind Technologies, uma subsidiária do Google, com a Royal Free London NHS Foundation Trust, que tem sido usada para ajudar no tratamento de lesões renais agudas. Outro exemplo é a Boehringer Ingelheim e a HealX, que colaboraram para encontrar terapias para doenças neurológicas raras. Eli Lilly and Company e Atomwise colaboraram para desenvolver medicamentos em novos alvos proteicos. Outro da lista é a colaboração da Mateon Therapeutics e PointR Data, que ajudou a tratar melanoma em estágio avançado, câncer de pâncreas e glioma. F. Hoffmann-La Roche e Owkin conduziram muitos ensaios clínicos baseados em algoritmos de aprendizado de máquina.

Aplicativos avançados baseados em IA

  • Nanorrobôs baseados em IA para entrega de medicamentos

Os nanorrobôs são projetados principalmente compostos por circuitos integrados, sensores, fonte de alimentação e backup seguro de dados, que são mantidos por meio de tecnologias computacionais, como IA. Eles são programados para evitar colisão, identificação de alvo, detecção e fixação e, finalmente, excreção do corpo. O mais recente avanço em nano/microrrobôs permite que eles naveguem até o local alvo com base em condições fisiológicas, como pH, melhorando a eficácia e reduzindo os efeitos adversos sistêmicos.

Muitos parâmetros precisam ser considerados, como ajuste de dose, liberação sustentada, liberação controlada e liberação dos medicamentos que precisam ser controlados para a administração adequada dos medicamentos. Os implantes de microchip são usados ​​para a liberação programada do implante, bem como para detectar a localização apropriada do implante no corpo.

Nossa equipe DBMR investigou o mercado de nanorrobôs e testemunhou que a América do Norte domina o mercado de nanorrobôs devido ao aumento na adoção da tecnologia nano-robótica. Além disso, a presença de infraestruturas sofisticadas de saúde impulsionará ainda mais o crescimento do mercado de nanorrobôs na região durante o período de previsão. Estima-se ainda que as crescentes áreas de aplicação de microscópios e a incorporação da microscopia com espectroscopia forneçam oportunidades potenciais para o crescimento do mercado de nanorrobôs nos próximos anos.

Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-nanorobots-market

  • Emergência de IA em Nanomedicina

O uso da nanotecnologia está definitivamente em ascensão. Os cientistas confiam e envolvem cada vez mais esta metodologia no campo da medicina. Os nanomedicamentos são utilizados para diagnosticar e tratar muitas doenças complexas, nomeadamente VIH, cancro, malária, asma e várias doenças inflamatórias. Nos últimos anos, a entrega de medicamentos modificados por nanopartículas tornou-se necessária no campo da terapêutica e do diagnóstico devido à sua maior eficácia e tratamento. Se a nanotecnologia for misturada com a IA, poderá resolver muitos problemas no desenvolvimento de formulações. Por exemplo, a IA auxiliou na preparação de silicassomas. Os silicassomas são uma combinação de iRGD, um peptídeo que penetra em tumores, e nanopartículas de sílica mesoporosa multifuncionais carregadas de irinotecano. Os nanomedicamentos aumentaram a captação de silicassomas três a quatro vezes, pois o iRGD ajuda na melhoria da transcitose dos silicassomas.

  • IA na entrega combinada de medicamentos e previsão de sinergismo/antagonismo

Diversas novas combinações de medicamentos têm sido aprovadas e comercializadas para tratar doenças complexas, como tuberculose e câncer, pois podem proporcionar efeito sinérgico para rápida recuperação dos pacientes. Os potenciais medicamentos escolhidos para esta combinação requerem uma triagem de alto rendimento de um número considerável de medicamentos, tornando o processo tedioso. Por exemplo, a terapia do câncer envolve uma combinação de seis ou sete medicamentos. Rashid et al. desenvolveram um modelo de plataforma de otimização de fenótipo quadrático, que é usado para detectar a terapia combinada ideal para o tratamento de mieloma múltiplo resistente ao bortezomibe por meio de uma coleção de 114 medicamentos aprovados pela FDA. Os dois melhores medicamentos envolvidos neste modelo são a decitabina (Dec) e a mitomicina C (MitoC).

Além das aplicações avançadas de IA, também tem importância no posicionamento de mercado. Com a facilidade da tecnologia e do e-commerce, ficou mais fácil para todas as empresas divulgarem sua marca na plataforma pública. Uma das ferramentas mais utilizadas é o SEO, que a maioria das empresas utiliza para ocupar uma posição fixa no marketing online e ajudar a posicionar o produto no mercado. As empresas buscam constantemente gerenciar sua posição em uma posição superior no jogo, dando reconhecimento à sua marca em pouco tempo.

Nossa equipe DBMR investigou o mercado de embalagens de comércio eletrônico e testemunhou que a Ásia-Pacífico domina o mercado de embalagens de comércio eletrônico em termos de participação de mercado e receita e continuará a florescer seu domínio durante o período de previsão. Isto se deve à crescente preferência dos consumidores por caixas de papelão ondulado em países em crescimento como Índia, China e Japão. , a China lidera o mercado da Ásia-Pacífico. Covid-19 impulsionou o crescimento do mercado. A Covid-19 restringiu a circulação de pessoas e materiais. O comércio eletrónico desempenhou um papel importante na pandemia porque aumentou a procura de bens essenciais, como mercearias, medicamentos, vegetais e outros produtos.

Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-e-commerce-packaging-market

Conclusão:

Com o avanço da inteligência artificial e das suas ferramentas notáveis, as empresas farmacêuticas estão a obter vantagens em muitos aspectos. Tem impacto no processo de desenvolvimento de medicamentos, juntamente com o ciclo de vida global do produto, o que, por sua vez, explica facilmente o aumento do número de start-ups. O setor da saúde enfrenta muitos desafios, como o aumento do custo dos medicamentos e terapias. A sociedade necessita de mudanças significativas nesta área, às quais é necessário dar importância. À medida que a era da saúde digital aumenta e a prevalência da IA ​​aumenta, também estão a surgir medicamentos personalizados com a dose desejada, parâmetros de libertação e outros aspectos necessários que podem ser fabricados de acordo com as necessidades individuais do paciente. As tecnologias baseadas em IA não só ajudarão a acelerar o tempo necessário para que os produtos cheguem ao mercado, mas, além disso, também ajudarão na melhoria dos produtos e na segurança geral do processo de produção.

Além disso, também proporcionará uma melhor utilização dos recursos disponíveis e com boa relação custo-benefício, aumentando assim a importância da automação. Além deste aspecto, a preocupação mais significativa associada à implementação destas tecnologias são as perdas de empregos que se seguiriam e as regulamentações rigorosas exigidas para o funcionamento da IA. No entanto, estes sistemas ajudam a encorajar a simplicidade nos humanos e não os substituem completamente. Muitos comerciantes incluem componentes de IA em suas ofertas padrão ou fornecem acesso a plataformas de IA como serviço (AIaaS). Seus custos de hardware, software e pessoal para IA podem ficar caros. A importância da AIaaS é que ela permite que indivíduos e empresas experimentem IA para diversos fins comerciais. Os vários subcampos da IA, nomeadamente aprendizagem automática, redes neurais e aprendizagem profunda, também são igualmente úteis na descoberta de medicamentos. Além destas, várias outras tecnologias suportam e permitem a IA, nomeadamente a visão computacional, a internet das coisas, algoritmos avançados e unidades de processamento gráfico.


Depoimentos de clientes