Artigos

14 de dezembro de 2022

A aplicação da IA ​​no diagnóstico do câncer

Algoritmos ou programas de computador que usam dados para determinar o curso de ação ou fazer previsões são chamados de inteligência artificial. Para que o computador examine os dados e chegue a um julgamento, os cientistas podem desenvolver um conjunto de regras ou instruções a serem seguidas pelo computador. O aprendizado de máquina é outra técnica de inteligência artificial em que o sistema treina para avaliar e compreender os dados. Como resultado, os algoritmos de aprendizado de máquina podem detectar padrões que são difíceis de serem reconhecidos pelo olho humano ou pelo cérebro. Além disso, esses algoritmos melhoram o aprendizado e a interpretação dos dados à medida que são expostos a informações mais recentes.

A Data Bridge Market Research analisa que a inteligência artificial no mercado de saúde deverá passar por um CAGR de 51,37% durante o período de previsão de 2022-2029. Isto indica que o valor de mercado, que era de 6,35 mil milhões de dólares em 2021, subiria para 175,22 mil milhões de dólares em 2029. Em janeiro de 2019, Dartford e Gravesham NHS Trust, no Reino Unido, desenvolveram uma tecnologia vestível alimentada por IA para monitorização de pacientes quando recebem alta. dos hospitais. Em outubro de 2019, care.ai e NVIDIA anunciaram uma colaboração para fornecer monitoramento autônomo de pacientes na área da saúde com inteligência artificial, aproveitando a plataforma da NVIDIA.

Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-artificial-intelligence-in-healthcare-market

O aprendizado profundo, um subconjunto do aprendizado de máquina, também tem sido aplicado por pesquisadores em aplicações de imagens de câncer. Aprendizado profundo refere-se a algoritmos que categorizam dados em métodos semelhantes aos do cérebro humano. As redes neurais artificiais são usadas por tecnologias de aprendizagem profunda para simular como as nossas células cerebrais recebem, interpretam e respondem às mensagens do resto do nosso corpo. Para determinar se uma massa é cancerosa ou não, os médicos realizam exames de imagem do câncer. Com que rapidez está se desenvolvendo se for câncer? Qual é o spread? Ele se recuperou desde que recebeu tratamento? De acordo com estudos, a IA pode melhorar a rapidez, a precisão e a confiabilidade das respostas dos profissionais médicos. A aplicação da IA ​​em oncologia pode ser compreendida em diferentes etapas:

AI in Oncology

Fig.1: O papel da IA ​​na oncologia

  • Encontrando o câncer em um estágio inicial As pessoas são examinadas rotineiramente em busca de indicações de câncer ou células que possam evoluir para câncer, por meio de procedimentos como mamografia e exames de Papanicolau. O objetivo é identificar e tratar o câncer precocemente, antes que ele se espalhe ou mesmo cresça. Para ajudar nos testes de rastreio do cancro da mama e outros tipos de testes de rastreio do cancro, os cientistas criaram tecnologias de IA. Nos últimos 20 anos, algoritmos de computador baseados em IA ajudaram os médicos a decifrar mamografias, mas o campo de estudo está se desenvolvendo rapidamente. Um sistema de IA foi desenvolvido por uma equipe para ajudar a decidir com que frequência as mulheres devem ser examinadas quanto ao câncer de mama. O algoritmo prevê a probabilidade de uma pessoa adquirir câncer de mama nos cinco anos seguintes, com base nos resultados de suas mamografias. O modelo teve melhor desempenho nos testes do que os atuais métodos de previsão de risco de câncer de mama. Um algoritmo de aprendizagem profunda que pode reconhecer pré-cânceres cervicais que precisam ser removidos ou tratados foi desenvolvido e testado por pesquisadores do NCI. Os profissionais de saúde, em algumas situações de poucos recursos, examinam o colo do útero com uma pequena câmera para verificar se há pré-câncer cervical. Esta abordagem é simples e sustentável; no entanto, não é muito preciso ou confiável. Várias tecnologias de IA foram demonstradas em estudos clínicos para melhorar o diagnóstico de adenomas, que são crescimentos pré-cancerosos que podem levar ao cancro do cólon. Alguns especialistas estão preocupados que estas tecnologias de IA possam forçar muitas pessoas a submeter-se a tratamentos desnecessários e a testes adicionais, porque apenas uma pequena proporção dos adenomas se transforma em cancro.
  • Detecção e diagnóstico de câncer A IA tem a capacidade de ajudar a diagnosticar o câncer mais cedo em pessoas que já apresentam sinais. Por exemplo, o modelo de IA criado pelo Dr. Turkbey e seus colegas do Centro de Pesquisa do Câncer do NCI pode tornar mais simples para os radiologistas identificarem o câncer de próstata que pode ser agressivo em um tipo relativamente novo de ressonância magnética de próstata conhecido como ressonância magnética multiparamétrica. O modelo de IA desenvolvido pela equipe do NCI “pode minimizar a taxa de erro e facilitar a curva de aprendizado para os radiologistas praticantes”, segundo o Dr. Ele disse que o modelo de IA pode atuar como “um especialista virtual” para radiologistas menos experientes que estão aprendendo a usar a ressonância magnética multiparamétrica. Muitos modelos de IA de aprendizagem profunda foram desenvolvidos para ajudar os médicos na detecção de câncer de pulmão em tomografias computadorizadas. Há uma proporção significativa de resultados de testes falso-positivos que indicam que uma pessoa tem câncer de pulmão, quando na verdade não tem, porque algumas anormalidades não cancerosas nos pulmões podem parecer muito semelhantes ao câncer nas tomografias computadorizadas. Teoricamente, a IA pode reduzir a incidência de falsos positivos e poupar alguns pacientes de estresse desnecessário, exames de acompanhamento e cirurgias, diferenciando melhor o câncer de pulmão de alterações não cancerosas nas imagens de tomografia computadorizada. Uma equipe de pesquisadores criou um algoritmo de aprendizado profundo para descobrir o câncer de pulmão e evitar outras alterações que se assemelham ao câncer.
  • Escolha de tratamento de câncer Os médicos também utilizam exames de imagem para coletar dados cruciais sobre o câncer, como a rapidez com que ele se desenvolve, se se espalhou e se há probabilidade de retornar após o tratamento. Os médicos podem usar essas informações para determinar o melhor curso de ação para seus pacientes. Numerosas pesquisas indicam que a IA pode ser capaz de extrair dados prognósticos de exames de imagem de forma mais precisa e abrangente do que os humanos são atualmente. Por exemplo, um modelo de aprendizagem profunda desenvolvido pela Dra. Harmon e seus associados pode prever o risco de um paciente com câncer de bexiga necessitar de terapias adicionais além da cirurgia. De acordo com profissionais médicos, aglomerados de células cancerígenas que se deslocaram para fora da bexiga em cerca de 50% das pessoas com tumores no músculo da bexiga (cancro da bexiga invasivo do músculo) são demasiado pequenos para serem detectados através de métodos convencionais. Essas células não detectadas podem continuar se multiplicando após a cirurgia se não forem eliminadas, levando à recorrência. Esses pequenos aglomerados podem ser eliminados pela quimioterapia, impedindo o retorno do câncer após a cirurgia. No entanto, conforme demonstrado pelos ensaios clínicos, pode ser um desafio identificar se os pacientes também necessitam de quimioterapia, de acordo com o Dr. Harmon. O modelo analisa imagens digitais do tecido tumoral original para determinar se existem agrupamentos cancerígenos microscópicos nos gânglios linfáticos circundantes. Num estudo publicado em 2020, o modelo de aprendizagem profunda superou o método convencional de prever se o cancro da bexiga se espalhou, com base em diversas variáveis, incluindo a idade do paciente e características específicas do tumor. Cada vez mais, a composição genética do câncer do paciente está sendo estudada para determinar o melhor curso de ação. Investigadores chineses desenvolveram um algoritmo de aprendizagem profunda para prever a existência de mutações genéticas importantes no tecido do cancro do fígado a partir de fotografias do tecido, algo que os patologistas não conseguem realizar apenas olhando as imagens. Os cientistas que criaram o algoritmo não sabem como ele determina quais alterações genéticas estão presentes no tumor, tornando a sua ferramenta um exemplo de IA que opera de maneiras surpreendentes.
  • IA em imagens médicas- A previsão do câncer pode se beneficiar da IA ​​e do aprendizado de máquina. A inteligência artificial é capaz de detectar doenças malignas que já se espalharam e pessoas que correm alto risco de contraí-las antes que isso aconteça. Isso permite que os profissionais médicos monitorem de perto esses pacientes e atuem rapidamente quando necessário. Uma cientista da computação do MIT chamada Regina Barzilay estava interessada em testar a inteligência artificial (IA) para prever o câncer. A equipa do MIT analisou o seu potencial para identificar mulheres em risco de cancro da mama antes do aparecimento de quaisquer sintomas evidentes. Para descobrir quais pacientes tinham câncer, ela reuniu mais de 40 mil mamografias de mulheres durante um período de quatro anos, totalizando cerca de 89 mil, e comparou os exames com o registro nacional de tumores. Regina então usou uma seleção dessas fotos para treinar um algoritmo de aprendizado de máquina (ML), uma espécie de IA, e então usou esse algoritmo para gerar previsões. O algoritmo identificou corretamente 30% dos futuros pacientes com câncer de mama como pertencentes a um grupo de alto risco. A IA tem vários usos no campo da imagem médica. Identificar e categorizar tumores malignos é um dos mais óbvios. A FDA autorizou Paige Prostate, uma ferramenta de patologia para câncer alimentada por IA, em setembro de 2021. Juntamente com o visualizador de patologia digital FullFocus, esta ferramenta de IA auxilia na detecção de câncer de próstata. A FDA revisou dados de uma investigação clínica onde 16 patologistas avaliaram 527 fotos de biópsia de próstata em busca de indicadores de câncer como pré-requisito para esta aprovação.
  • IA em exames de sangue- Os exames de sangue com melhorias de IA podem ajudar os médicos na detecção mais precisa do câncer. De acordo com um estudo da Cancer Cell International, o perfil sanguíneo, que analisa perfis plasmáticos de ctDNA e miRNA usando algoritmos de IA, é uma forma mais eficaz de encontrar e monitorar o câncer do que as tomografias computadorizadas convencionais. Uma técnica de ponta baseada em IA foi criada por pesquisadores do Johns Hopkins Kimmel Cancer Center para detectar câncer de pulmão por meio de exames de sangue. Amostras de sangue de 796 participantes dos EUA, Dinamarca e Holanda foram usadas para testar este método. Este exame de sangue foi pareado pelos pesquisadores com biomarcadores de proteínas, fatores de risco clínicos e tomografias computadorizadas dos pacientes. Eles identificaram corretamente o câncer em 91% das pessoas com estágios iniciais da doença e, como resultado, em 96% dos pacientes com fases avançadas de câncer.
  • IA em Imunoterapia- A principal função da IA ​​na imunoterapia é avaliar os resultados de várias terapias e ajudar os médicos a modificar as suas prescrições. Um método alimentado por IA foi desenvolvido por uma equipe de pesquisa do MD Anderson Cancer Center e do UT Southwestern Medical Center para determinar se os neoantígenos – peptídeos produzidos quando os genomas das células cancerígenas sofrem mutação – são reconhecidos pelo sistema imunológico de um paciente. Esses algoritmos de IA tornariam possível prever como as células cancerígenas reagirão às imunoterapias. As células T do nosso sistema imunológico estão sempre em busca de indicações de câncer e outros organismos invasivos. Essas células se ligam umas às outras quando identificam neoantígenos. No entanto, alguns neoantigénios não são identificados, o que promove a propagação do cancro. Esta informação tornaria possível a capacidade de antecipar a resposta do paciente às imunoterapias e criar terapêuticas individualizadas baseadas em células T e vacinas contra o câncer.

Espera-se que o mercado de imuno-oncologia (IO) testemunhe um crescimento de mercado a uma taxa de 8,90% no período de previsão de 2022 a 2029. O mercado de imuno-oncologia (IO) é segmentado com base no tipo, alvo, indicação, fim usuários e canal de distribuição. Prevê-se que a Ásia-Pacífico observe um crescimento significativo na crescente taxa de crescimento favorável na adoção da imunoterapia contra o câncer. Além disso, prevê-se que o aumento da incidência da doença e, por sua vez, o aumento da taxa de mortalidade impulsione ainda mais o crescimento do mercado de imuno-oncologia (IO) na região nos próximos anos.

Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-immuno-oncology-market

  • Desenvolvimento de drogas- O mesmo medicamento pode responder de forma diferente a várias formas de cancro. A IA é capaz de prever como vários medicamentos afetariam as células malignas. Esta informação auxilia na criação de novos medicamentos anticâncer e no momento de seu uso. Por exemplo, dependendo do estado mutacional da célula cancerosa, uma equipe de pesquisa criou um algoritmo de floresta aleatória que pode prever a ação de medicamentos anticâncer.

Benefícios da IA ​​em Oncologia

A IA geralmente tem muitas vantagens na área médica. Aqui estão os três principais benefícios do uso de inteligência artificial na detecção e tratamento do câncer:

AI in Oncology

Fig.2: Benefícios da IA ​​em Oncologia

  • Medicina e Terapias Personalizadas - Os big data e a IA permitem que os profissionais médicos examinem uma variedade de dados sobre o paciente e as células cancerígenas para desenvolver tratamentos individualizados. Os efeitos colaterais deste tipo de terapia serão menos graves. Menos danos serão causados ​​às células saudáveis, mas terá um efeito maior nas células cancerígenas. A IA ajuda os radiologistas a determinar quais tumores e anomalias são cancerígenos e requerem intervenção médica genuína. De acordo com um estudo publicado no Journal of the National Cancer Institute, algoritmos de IA podem identificar lesões pré-cancerosas em imagens cervicais e diferenciá-las de outras anormalidades para evitar que os pacientes recebam tratamento desnecessário para pequenos problemas.
  • Eliminação de procedimentos invasivos- Às vezes, o caráter benigno do tumor só é descoberto após a cirurgia de retirada, o que teria permitido que o procedimento fosse totalmente evitado. Tais ocorrências podem ser bastante reduzidas com a ajuda da IA ​​no processo de detecção do câncer. Um estudo, por exemplo, descobriu que a IA pode reduzir em 30,6% os procedimentos de conservação da mama. Biópsias com agulha guiadas por imagem podem ser usadas para treinar algoritmos de aprendizado de máquina para reconhecer tumores malignos. Um sistema aleatório de ML de floresta foi usado para avaliar 335 pacientes com câncer em potencial, e os pesquisadores descobriram que ele interrompeu um terço dos procedimentos desnecessários.
  • Redução de falsos positivos e negativos A IA para detecção de câncer aumentará a precisão do diagnóstico e diminuirá falsos positivos e negativos. Temos provas graças à investigação sobre a detecção do cancro da mama. Uma em cada dez pacientes do sexo feminino que fazem mamografias examinadas por médicos apresenta resultados falso-positivos, forçando-as a submeter-se a procedimentos estressantes e a testes invasivos desnecessários. A equipe de pesquisa do Google criou um software que usa IA para reduzir leituras de mamografia falsos positivos e falsos negativos em 6% e 9%, respectivamente. Outra equipe de pesquisadores criou um algoritmo de IA para identificação do câncer de mama. Este algoritmo ajudou os radiologistas a reduzir as taxas de falsos positivos em 37,3% durante um exame.

Desafios para IA em Oncologia e Perspectivas Futuras

Interações não lineares complexas, tolerância a falhas, processamento distribuído simultâneo e aprendizado são tarefas que a IA pode realizar com facilidade. devido aos seus benefícios de autoadaptação, ao tratamento simultâneo de informações quantitativas e qualitativas e aos resultados validados de numerosos estudos clínicos em vários domínios. Não há dúvida de que a IA é usada em cuidados clínicos de diversas maneiras. Explora plenamente as diferentes facetas da variabilidade clínica, ao mesmo tempo que aborda a atual falta de universalidade e objetividade nos sistemas especialistas. Os hospitais podem treinar médicos juniores em diagnóstico clínico e tomada de decisões usando IA. Um número crescente de artigos acadêmicos discute as notáveis ​​capacidades de diagnóstico e prognóstico dos sistemas computacionais baseados em ML.

Para garantir a sua aplicação no diagnóstico e prognóstico do cancro, a tecnologia de IA enfrenta algumas dificuldades significativas que devem ser superadas. Por exemplo, os dados brutos de entrada de imagens médicas não podem ser usados. Processar e extrair informações dos dados da imagem é essencial. Mais estudos são necessários para interpretar os resultados do coeficiente de pesos em modelos de redes neurais, que foram validados, calculados e possuem intervalos de confiança adequados devido ao desenvolvimento tecnológico e ampla adoção. O campo da medicina clínica provavelmente utilizará RNAs com mais frequência como resultado de uma maior pesquisa sobre elas. Embora o valor da IA ​​nesta indústria seja reconhecido, os cientistas da computação e os profissionais médicos devem trabalhar juntos para garantir que os membros da equipe interdisciplinar sejam treinados e colaborem. Os profissionais médicos podem então utilizar o potencial desta tecnologia de maneira prática e econômica. As garantias de privacidade e segurança de dados são um grande problema em relação ao futuro da IA ​​na medicina. Embora o “big data” e as soluções baseadas em ML tenham gerado muito entusiasmo nos últimos anos, atualmente existem muito poucos casos que mostram como a IA afetou a prática clínica.

A Data Bridge Market Research analisa que o mercado de diagnóstico de câncer deverá atingir o valor de US$ 28,21 bilhões até o ano de 2029, com um CAGR de 7,29% durante o período de previsão. O aumento dos casos de câncer oferece oportunidades de crescimento ao mercado. O cancro é a segunda principal causa de morte no mundo, sendo responsável por 10 milhões de mortes até 2020. O cancro é responsável por aproximadamente um sexto de todas as mortes em todo o mundo (Fonte: Organização Mundial de Saúde). Em 2020, foram notificados 19,3 milhões de novos casos de cancro, prevendo-se que esse número aumente para 30,2 milhões até 2040. Este aumento na incidência de cancro pode ser atribuído à crescente população geriátrica, bem como à população em geral.

Para saber mais sobre o estudo, acesse:https://www.databridgemarketresearch.com/pt/reports/global-cancer-diagnostics-market


Depoimentos de clientes