O câncer é a principal causa de morte em nível global. A guerra global contra o cancro não é nova. Isso vem acontecendo há décadas. O objectivo global de lutar e vencer o cancro é tão forte que todos, desde investigadores a cientistas, estão a colaborar incansavelmente para acabar com este fardo mundial.
Introdução
O campo da ciência da computação mostrou resultados notáveis e promissores no passado nesta batalha contra o câncer. Os gastos crescentes direcionados às competências de pesquisa e desenvolvimento envolvendo a aplicação da ciência da computação no diagnóstico e tratamento do câncer são um sinal positivo para a indústria global de saúde. Mas antes de compreender o papel da ciência da computação na oncologia, vejamos as recentes estatísticas globais sobre o cancro.
Fig.1: Estatísticas do Câncer 2023 (EUA)
Fonte: Cancer.org
Os diagnósticos de câncer mais típicos para homens e mulheres em 2023 são mostrados na Figura 1. Quase metade (48%) de todos os casos incidentes de câncer em homens são de próstata, pulmão e brônquios (doravante pulmão) e câncer colorretal (CCRs). ), com 29% dos diagnósticos provenientes apenas do câncer de próstata. O cancro da mama, por si só, é responsável por 31% de todos os diagnósticos de cancro nas mulheres, enquanto o cancro do pulmão, o CCR e o cancro da mama, em conjunto, representam 52% de todos os novos diagnósticos. O número projetado de novos casos e mortes dos dez principais tipos de câncer nos Estados Unidos, por sexo, em 2023. As estimativas são arredondadas para os 10 mais próximos, e os casos não incluem cânceres in situ da bexiga urinária ou da pele de células basais e escamosas cânceres.
Fig.2: Tendências nas taxas de incidência de câncer (1975–2019) e mortalidade (1975–2020) por sexo (EUA)
Fonte: Cancer.org
A Figura 2 ilustra tendências a longo prazo nas taxas globais de incidência de cancro, que reflectem padrões de comportamentos de risco de cancro e mudanças na prática médica, tais como testes de rastreio do cancro. Por exemplo, o aumento da incidência masculina no início da década de 1990 reflecte um aumento na detecção de cancro da próstata assintomático, como resultado da rápida adesão generalizada ao teste do antigénio específico da próstata (PSA) entre homens anteriormente não rastreados. Depois disso, a incidência de cancro nos homens diminuiu até cerca de 2013, depois estabilizou até 2019. As taxas nas mulheres permaneceram relativamente estáveis até meados da década de 1980, quando começaram a aumentar lentamente em 0,5% ao ano.
Como resultado, a disparidade entre homens e mulheres está a diminuir gradualmente, com o rácio da taxa de incidência entre homens e mulheres a cair de 1,59 (IC 95%, 1,57-1,61) em 1992 para 1,14 (IC 95%, 1,14-1,15) em 2019. No entanto, , as diferenças de risco variam muito de acordo com a idade. Por exemplo, as mulheres têm taxas cerca de 80% mais altas do que os homens entre as idades de 20 e 49 anos, enquanto os homens têm taxas quase 50% mais altas entre as idades de 75 anos ou mais.
C e CSc: Câncer e Ciência da Computação
Estes números não só realçam a terrível realidade desta doença prevalente, mas também são cruciais para académicos, decisores políticos e outros profissionais, uma vez que devem primeiro compreender os efeitos que o cancro tem na população global antes de proporem medidas para o combater.
Um surpreendente apelo à ação para um grupo improvável de candidatos – cientistas da computação – está entre as técnicas oferecidas recentemente. Estes avanços recentes na batalha contra o cancro têm o potencial de alterar fundamentalmente o panorama da investigação nesse campo e, em última análise, salvar milhares de vidas. Este é apenas um método potencial pelo qual a ciência da computação poderia coletar big data para progredir seriamente nas ciências como um todo.
Siddhartha Mukherjee, um médico e cientista americano nascido na Índia, escreve no seu livro O Imperador de Todas as Doenças: Uma Biografia do Cancro sobre a descoberta surpreendentemente recente de que o cancro é uma doença hereditária provocada predominantemente por mutações no nosso ADN. Assim, devido a estas mutações, os tumores cancerígenos têm uma diversidade inconcebível que torna difícil a sua erradicação total.
Como resultado, foi sugerido que, ao sequenciar o genoma de um tumor cancerígeno, que é essencialmente o processo de tradução ou descodificação da linguagem enigmática que constitui a sequência única de ADN do tumor, os médicos poderão então prescrever um tratamento individualizado e direcionado. para cada paciente com câncer, com o objetivo de interromper o crescimento do câncer ou curá-lo completamente.
Cientistas da computação como David Patterson, um dos diretores do Laboratório de Algoritmos, Máquinas e Pessoas (AMP Lab) da UC Berkeley, foram motivados por isso em seu trabalho. O olho humano não pode realizar tal tarefa sozinho. Absorver e analisar correctamente e com sucesso este enorme volume de dados a uma velocidade vertiginosa exigiria o envolvimento de algumas das plataformas de computação cognitiva mais potentes do mundo, como o Watson da IBM. Haverá três resultados do envolvimento dos cientistas da computação neste processo altamente tecnológico:
-
A redução dos custos de processamento de informações pode ajudar a tornar o tratamento personalizado acessível a todos
-
Pode levar ao desenvolvimento de um repositório do genoma do cancro acessível a investigadores e especialistas médicos
-
Será capaz de encontrar uma pequena agulha em um palheiro muito grande usando o repositório mencionado acima para encontrar terapia individualizada e direcionada para cada tumor único entre as inúmeras combinações possíveis de medicamentos.
Oncologia Computacional como Extensão da Ciência da Computação em Oncologia
A biologia computacional estabelece uma conexão entre a ciência física e a oncologia. Oncologia computacional é um termo relativamente novo na medicina que está começando a ganhar força. Algumas pessoas poderão ficar surpreendidas ao saber que enormes instituições médicas em todo o mundo estão a criar departamentos completos rotulados como tal. Cada vez mais tempo, esforço, dinheiro e recursos estão sendo dedicados ao aprendizado de como o câncer se espalha e pode, em última análise, ser removido permanentemente do corpo.
Com tudo, a probabilidade de desenvolver soluções duradouras aumenta com a informação recolhida. A fim de organizar as vias de crescimento tumoral, a biologia tumoral, a bioinformática e os perfis de marcadores tumorais e construir modelos preditivos para tratamentos baseados em todos esses dados, a oncologia computacional organiza os aspectos moleculares do câncer.
Modelos de computador são usados em oncologia computacional para produzir análises de marcadores tumorais que são úteis em medicina de precisão, triagem populacional e modelagem individual de células cancerígenas. Este conhecimento torna mais provável que medicamentos ou técnicas de tratamento específicas ofereçam soluções a longo prazo para doenças numa pessoa com cancro.
Durante muitos anos - e em certas circunstâncias, ainda hoje - a maioria das pessoas com cancro recebeu tratamento que é apenas "amplamente aplicado". Quando os marcadores moleculares estão ausentes ou são menos úteis na determinação das razões precisas pelas quais determinadas abordagens de tratamento são eficazes para alguns pacientes, mas não para outros. Para melhor servir os pacientes, os departamentos de oncologia computacional podem aproveitar a riqueza de informações sobre o nosso genoma que o sequenciamento de próxima geração (NGS) disponibilizou em células saudáveis e doentes e organizá-las em um banco de dados.
Para gerenciar todas as facetas deste campo emergente da medicina, alguns departamentos procuram pessoas com habilidades em ciência da computação ou ciência de laboratório. Para educadores, cientistas e médicos, este campo está em expansão. Trabalhando em conjunto, podemos aumentar os nossos conhecimentos e competências, a fim de diminuir o fardo do cancro em todo o mundo, que deverá aumentar de 14,1 milhões de novos casos em 2012 para 23,6 milhões de casos anualmente até 2030, de acordo com a Agência Internacional de Investigação. sobre Câncer.
A Data Bridge Market Research analisa que o mercado de diagnóstico de câncer deverá atingir o valor de US$ 28,21 bilhões até o ano de 2029, com um CAGR de 7,29% durante o período de previsão. A América do Norte domina o mercado de diagnóstico de câncer devido à presença crescente de inúmeras empresas de biotecnologia e dispositivos médicos, ao aumento do financiamento disponível para projetos de pesquisa e desenvolvimento e à alta adoção de tecnologias avançadas pela região. Alguns dos principais players que operam no mercado de diagnóstico de câncer são Abbott. (EUA), DiagnoCure Inc. (Canadá), Thermo Fisher Scientific Inc. (EUA), Illumina, Inc. (EUA), QIAGEN (Alemanha) e F. Hoffmann-La Roche Ltd (Suíça).
Para saber mais sobre o estudo, acesse: https://www.databridgemarketresearch.com/pt/reports/global-cancer-diagnostics-market
''Microsoft é uma ambição de uma década”
A Microsoft está utilizando a ciência da computação, incluindo aprendizado de máquina e algoritmos, para combater o câncer. Os pesquisadores da Microsoft podem modificar técnicas geralmente usadas para modelar processos computacionais para simular processos biológicos, abordando o câncer como um sistema de processamento de informações.
O objetivo final da empresa é desenvolver computadores moleculares que instruirão o corpo a combater as células cancerígenas assim que forem descobertas. Combinando isto com uma estratégia baseada em dados, os esforços da Microsoft para combater a doença centram-se na aprendizagem automática. A empresa espera empregar ferramentas de análise para pegar os dados biológicos existentes e usá-los para compreender melhor e tratar a doença.
É uma descoberta matemática profunda, não apenas uma analogia. Embora a biologia e a computação possam parecer pólos opostos, na verdade elas têm laços muito profundos no nível mais fundamental. Por exemplo, a aprendizagem automática e o processamento de linguagem natural estão a ser utilizados para fornecer um método de classificação dos dados de investigação disponíveis, que podem então ser fornecidos aos oncologistas para produzir o tratamento do cancro mais eficaz e personalizado para os pacientes.
Atualmente, há tanta informação disponível que é difícil para um indivíduo ler tudo e compreendê-lo. As informações podem ser processadas de forma mais rápida e simples pelo aprendizado de máquina do que pelos humanos.
O aprendizado de máquina também é combinado com a visão computacional para ajudar os radiologistas a compreender melhor como o tumor de um paciente está se desenvolvendo. Os pesquisadores estão desenvolvendo um sistema que, no futuro, analisará pixels de varreduras 3D para determinar exatamente quanto um tumor cresceu, diminuiu ou mudou de forma desde a varredura anterior. De acordo com Andrew Phillips, chefe da divisão de pesquisa em computação biológica do Cambridge Lab, os cientistas podem aprender com o legado da Microsoft como pioneira na indústria de software. “Podemos programar a biologia usando técnicas que descobrimos para programar computadores”, acrescentou. "Isso abrirá muito mais utilizações e tratamentos ainda melhores."
Phillips está desenvolvendo um computador molecular que pode ser inserido dentro de uma célula para rastrear doenças. Uma resposta para combater a doença seria acionada se o sensor descobrisse que se tratava de algo parecido com câncer. Este tipo de investigação também empregaria a computação convencional e a adaptaria para utilização em biotecnologia ou aplicações médicas, permitindo que o corpo fosse treinado para combater as doenças da mesma forma que programamos os computadores para o fazer.
Embora a investigação ainda esteja nas suas fases iniciais, Phillips disse ao The Telegraph que dentro de "cinco a dez anos" seria tecnicamente viável implantar um sistema molecular inteligente para combater uma doença desta forma.
Conclusão
A pesquisa sobre o câncer é cada vez mais realizada online. Os cientistas da computação deveriam se alistar em massa, pois poderão ter os melhores talentos para combater o câncer nos próximos dez anos. Espera-se que, ao sequenciar o genoma de um tumor cancerígeno, os profissionais médicos possam em breve fornecer uma terapia personalizada e direcionada para retardar ou impedir a propagação do cancro.
Dada a rapidez com que a ciência da computação impactou a vida dos pacientes e se integrou na investigação do cancro, parece razoável prever que os próximos anos serão igualmente, se não mais, produtivos. Nos próximos dez anos, prevê-se que os médicos serão capazes de criar mapas detalhados de como os tecidos saudáveis e doentes se desenvolvem e evoluem. Esses mapas os ajudarão a projetar novos diagnósticos e tratamentos de câncer.
A Data Bridge Market Research analisa que a inteligência artificial no mercado de saúde, que é de US$ 9,64 bilhões em 2022, deverá atingir US$ 272,91 bilhões até 2030, com um CAGR de 51,87% durante o período de previsão de 2023 a 2030. A inteligência artificial em saúde o mercado é segmentado com base em oferta, tecnologia, usuário final e aplicação. Espera-se que a Ásia-Pacífico cresça à maior taxa de crescimento no período previsto de 2023 a 2030 devido ao aumento das iniciativas governamentais para promover a sensibilização, ao aumento do turismo médico e à crescente procura de cuidados de saúde de qualidade na região.
Para saber mais sobre o estudo, acesse: https://www.databridgemarketresearch.com/pt/reports/global-artificial-intelligence-in-healthcare-market