Artigos

14 de dezembro de 2022

Transformação da indústria energética trazida pela IA

  • Uma investigação recente mostra que a Europa é uma das principais regiões em termos de inovação relacionada com a energia.
  • Uma das principais forças por trás da mudança para energia de baixo carbono são os automóveis elétricos.

A Data Bridge Market Research analisa que o mercado de estações de carregamento de veículos elétricos foi avaliado em US$ 6,97 bilhões em 2021 e deverá atingir US$ 167,52 bilhões até 2029, registrando um CAGR de 48,80% durante o período de previsão de 2022 a 2029. A crescente popularidade e utilização de veículos eléctricos realçaram a necessidade de desenvolvimento de infra-estruturas de carregamento. Por exemplo, a China, os Estados Unidos e a Alemanha estão a gastar pesadamente em infraestruturas de carregamento de veículos elétricos (VE), bem como em investigação e desenvolvimento para técnicas de carregamento mais rápidas e eficientes. ABB (Suíça), Shell plc (Reino Unido), ChargePoint (EUA), Tesla (EUA), BYD (China), bp Chargemaster (Reino Unido), Webasto Thermo & Comfort (Alemanha), Schneider Electric (França), Blink Charging Co. (EUA), Groupe Renault (França), Phihong USA Corp. (EUA), entre muitos outros, são alguns dos principais players que operam no mercado.

Para saber mais sobre o estudo, acesse: https://www.databridgemarketresearch.com/pt/reports/global-electric-vehicle-charging-stations-market

Um dos passos essenciais para resolver os problemas causados ​​pela catástrofe climática é a transição para a energia de baixo carbono (LCE). Os limites de temperatura do Acordo Climático de Paris podem ser excedidos se as emissões não forem reduzidas e a utilização de energia mais limpa não for alargada. De acordo com o segundo estudo sobre o desenvolvimento das tecnologias necessárias para apoiar a mudança para formas de energia mais verdes, divulgado pelo Instituto Europeu de Patentes (EPO) e pela Agência Internacional de Energia (AIE), é esse o caso. O EPO e a AIE vasculharam bases de dados internacionais de patentes para encontrar padrões de inovação, contabilizando casos em que as patentes foram depositadas em vários escritórios, conhecidos como famílias internacionais de patentes, para avaliar o progresso alcançado até agora (IPF). De acordo com o artigo, “estes dados de patentes oferecem indicadores iniciais de avanços tecnológicos que certamente impactarão a economia e podem, assim, ilustrar como a inovação está alimentando a transição energética”.

Growth of Low Carbon Energy

Fig.1: Crescimento Global de Energia de Baixo Carbono

Fonte: Instituto Europeu de Patentes

Entre 2014 e 2016, houve uma desaceleração na expansão dos IPFs para energia verde. Mas, de acordo com o relatório do EPO/IEA, está novamente a aumentar. Além disso, o aumento das patentes relacionadas com a LCE coincide com uma diminuição na utilização de combustíveis fósseis.

A inteligência artificial (IA), como acontece em todos os setores, está revolucionando os setores de energia e serviços públicos. Para garantir que a energia seja fornecida quando e onde for necessária, com o mínimo de desperdício, ela é utilizada para estimar a demanda e controlar a distribuição de recursos. Isto é crucial para o setor das energias renováveis ​​porque a energia renovável muitas vezes não é adequada para armazenamento a longo prazo e deve ser utilizada o mais rapidamente possível depois de produzida. De acordo com o Fórum Económico Mundial, a IA será crucial para a mudança global para as energias renováveis. Um aumento na eficiência resultará de previsões mais precisas de oferta e demanda.

Os modelos descentralizados de geração e distribuição de energia também estão substituindo os centralizados. Nestes modelos, mais energia é produzida por redes elétricas menores e localizadas (como parques solares), e a coordenação da integração destas redes necessita de algoritmos sofisticados de IA. O plano é construir uma “camada de coordenação inteligente” que ficará entre a infra-estrutura energética e os edifícios onde pessoas e coisas utilizam electricidade.

Em 2022, podemos antecipar mais inovação por parte das startups que utilizam IA de novas formas. A título de ilustração, a Likewatt na Alemanha desenvolveu o Optiwize, um serviço que estima as emissões de dióxido de carbono e o consumo de energia para ajudar os consumidores a monitorizar os efeitos do seu consumo de energia em tempo real e a fazer escolhas mais informadas sobre o seu fornecimento de energia. Para aumentar a eficiência na produção de energia renovável, outras empresas estão a criar tecnologia para manutenção preditiva. Um sistema energético mais integrado e electrificado, com maior interacção entre os sectores da energia, dos transportes, da indústria e da construção, resulta das tentativas de descarbonizar o sistema energético mundial. Altos graus de descentralização no sector energético também são causados ​​pelo esforço para descarbonizar o fornecimento de energia. A fim de gerir este sistema cada vez mais complexo e otimizá-lo para obter as mais baixas emissões de gases com efeito de estufa, serão necessários níveis consideravelmente mais elevados de cooperação e adaptabilidade de todos os intervenientes do setor, incluindo os consumidores.

Com aplicações potenciais que vão desde a otimização e integração eficaz de recursos de energia renovável variáveis ​​na rede elétrica, até ao apoio a um sistema de distribuição de eletricidade pró-ativo e autónomo, até à abertura de novos fluxos de receitas para flexibilidade do lado da procura, a IA tem um potencial significativo para apoiar e acelerar uma transição energética confiável e de menor custo. A procura por materiais de alto desempenho que sustentem as mais recentes tecnologias sustentáveis ​​de energia e armazenamento pode beneficiar significativamente da utilização da IA. No entanto, apesar do seu potencial, a IA é ocasionalmente utilizada no setor energético, principalmente em programas experimentais de manutenção proativa de ativos. Embora eficaz, a IA tem um potencial muito maior para acelerar a transição energética mundial do que é agora apreciado. Abaixo está a discussão sobre como a IA terá impacto no setor energético através de uma ampla gama de aplicações:

Top Applications of AI in the Energy Industry

Fig.2: Principais aplicações de IA na indústria energética

  • Tabelas inteligentes- Para se tornarem “inteligentes”, as redes podem agora ser ligadas a sensores, ferramentas de análise de dados, sistemas de armazenamento de energia, plataformas de gestão de energia e outras tecnologias energéticas. Os fornecedores de energia podem utilizar redes inteligentes para recolher dados sobre o consumo de energia de cada dispositivo da rede e criar projetos de eficiência energética para os seus clientes. Além disso, permite o monitoramento quase em tempo real do uso e dos fluxos de energia pelas empresas de energia. Depois, com sistemas automatizados de resposta à procura que podem cortar a energia durante as horas de ponta, as empresas de energia podem minimizar a utilização de energia. Como consequência, tanto as famílias como os fornecedores de energia podem poupar energia. Uma microrrede é uma pequena rede elétrica que pode funcionar independentemente da rede principal. A IA e o aprendizado de máquina são usados ​​por sistemas de controle de microrredes para otimizar o uso de energia e controlar o fluxo de energia. Porque podem oferecer segurança energética durante emergências e tornar mais simples a integração de fontes de energia renováveis ​​na rede do que as redes de energia tradicionais, as micro-redes estão a crescer em popularidade.
  • Segurança e gerenciamento de rede- A IA é utilizada para gerir fluxos de energia dentro e entre edifícios, empresas, baterias de armazenamento, fontes de energia renováveis, microrredes e a rede elétrica principal, a fim de otimizar os sistemas energéticos. Isto diminui o desperdício de energia e, ao mesmo tempo, aumenta a conscientização dos consumidores sobre o uso de energia. Embora as fontes de energia renovável intermitente, como a eólica e a solar, estejam crescendo em popularidade. Como resultado, estas fontes de energia nem sempre estão disponíveis quando necessárias. Uma vez que a rede energética deve gerir a energia em tempo real à medida que é criada, isto representa um desafio. As empresas de energia podem prever quando a eletricidade renovável estará disponível e gerir as redes energéticas em conformidade com a ajuda da IA ​​e da aprendizagem automática. Os robôs também são empregados para instalações de energia, manutenção da rede e controle da produção e consumo de energia. Para reparar oleodutos, turbinas eólicas e outras infraestruturas energéticas, robôs podem ser utilizados. As empresas de energia podem aumentar ainda mais a eficiência e reduzir custos ao automatizar estes processos. Um sistema sofisticado como a rede elétrica está aberto a hackers. Ao impedir os ataques cibernéticos antes que estes ocorram, a IA e a aprendizagem automática podem aumentar a segurança das infraestruturas elétricas. Para tal, a análise de dados será utilizada para encontrar tendências nos dados energéticos que possam ser sinais de um ataque cibernético. A IA e o aprendizado de máquina podem ser usados ​​para reagir a um ataque cibernético, uma vez detectado.
  • Detecção de roubo de energia- O roubo e a fraude de electricidade custam ao sector da energia e dos serviços públicos até 96 mil milhões de dólares anualmente, com perdas de até 6 mil milhões de dólares só nos Estados Unidos. A retirada ilícita de energia da rede é conhecida como roubo de energia. A distorção deliberada dos dados energéticos ou do uso de energia é conhecida como fraude energética. Estas anomalias podem ser automaticamente encontradas e sinalizadas para resolução por empresas de energia utilizando IA e aprendizagem automática. As empresas de energia podem fazer isto para salvaguardar os seus recursos, reduzir o desperdício de energia e fazer poupanças financeiras.
  • Produção melhorada e aumentada O setor energético também está a utilizar a IA e a aprendizagem automática para aumentar a produção. Por exemplo, algoritmos de aprendizado de máquina são usados ​​por empresas de petróleo e gás para melhor localizar poços e aumentar a produção. Estas empresas podem decidir onde perfurar petróleo e gás de forma mais eficaz, analisando dados obtidos de pesquisas sísmicas e outras fontes. Isto melhorará a eficiência energética e resultará num sistema energético mais limpo e eficaz, que será mais simples de gerir pelos fornecedores de energia.
  • Armazenamento de energia e análise preditiva- Até 2030, espera-se que o mercado de armazenamento de energia tenha aumentado 20 vezes. Tecnologias inteligentes de armazenamento de energia podem ser incluídas na rede energética para melhorar a eficácia da gestão energética. As empresas de electricidade podem agora fornecer energia quando necessário, mesmo que o seu actual fornecimento de energia seja insuficiente, utilizando o armazenamento de energia para construir centrais eléctricas virtuais. Isso diminui a necessidade de as empresas de energia construírem usinas de energia totalmente novas. As mudanças futuras na procura de energia podem ser previstas através de análises preditivas. A infra-estrutura apropriada pode então ser construída para planear o futuro e suprir as necessidades energéticas. As empresas de energia também podem prever quando uma máquina ou equipamento tem maior probabilidade de apresentar mau funcionamento, empregando análises preditivas. Isto não só ajuda a prevenir interrupções imprevistas, mas também ajuda as empresas a poupar dinheiro, permitindo-lhes preparar-se para a substituição de activos energéticos caros e essenciais e evitar tarefas de manutenção imprevistas.
  • O envolvimento do cliente- O sector da energia está a começar a adoptar a IA e a aprendizagem automática para a interacção com os clientes. As empresas de energia podem fornecer aos clientes informações adaptadas às suas necessidades, utilizando IA e aprendizagem automática. Isto implica analisar os dados dos clientes para compreender a sua utilização de energia e, em seguida, fornecer-lhes informações sobre como alterar os seus hábitos de utilização para consumir menos energia.
  • Negociação de energia- Como a energia deve ser distribuída imediatamente, a comercialização de energia é diferente de outras mercadorias. Os comerciantes de energia enfrentam um desafio por causa disto, mas há também uma oportunidade porque os mercados de energia estão a ficar mais líquidos. Ao prever a procura de energia e dar aos comerciantes acesso a dados de preços em tempo real, a IA e a aprendizagem automática podem ser utilizadas para melhorar a eficiência do mercado de comércio de energia. Os comerciantes de energia podem então utilizar esta informação para fazer escolhas mais informadas sobre quando comprar e vender energia. Os contratos de compra de energia (PPAs), um contrato financeiro entre compradores e vendedores de energia, foram desenvolvidos utilizando a tecnologia blockchain. Esses contratos são mais eficazes graças à tecnologia blockchain porque aceleram as transações, custam menos de usar do que as plataformas PPA convencionais e são baseados em uma plataforma muito segura.

Espera-se que o mercado de conectores de energia renovável cresça a uma taxa de 6,10% no período previsto de 2021 a 2028. O relatório Data Bridge Market Research sobre o mercado de conectores de energia renovável fornece análises e insights sobre fatores como a crescente adoção de fontes de energia renováveis. Os elevados custos de instalação e o esgotamento dos recursos naturais estão a funcionar como restrições de mercado para os conectores de energia renovável no período de previsão acima mencionado. Os crescentes níveis de aquecimento global e o rápido aumento da população se tornarão o maior desafio no crescimento do mercado de conectores de energia renovável no período de previsão acima mencionado. O mercado de conectores de energia renovável é segmentado com base em tipos, fonte de energia, aplicação e usuário final. A Ásia-Pacífico dominará o mercado de conectores de energia renovável devido ao aumento das reformas energéticas na região, juntamente com o crescente número de canais de distribuição, enquanto a América do Norte esperará crescer no período de previsão de 2021-2028 devido à prevalência de políticas favoráveis ​​e crescentes padrões de portfólio renovável.

Para saber mais sobre o estudo, acesse: https://www.databridgemarketresearch.com/pt/reports/global-renewable-energy-connector-market

Como a IA acelerará o ritmo da transição energética?

Afirmado de forma inequívoca na nova avaliação do IPCC, são urgentemente necessárias mais ações para evitar impactos climáticos catastróficos a longo prazo. Os combustíveis fósseis ainda fornecem mais de 80% da energia mundial, pelo que qualquer iniciativa deve centrar-se no sector energético. Felizmente, o sistema energético já está a mudar; a produção de energia renovável está a expandir-se rapidamente devido à diminuição dos custos e ao aumento do interesse dos investidores. No entanto, não resta muito tempo e a escala e o custo da descarbonização de todo o sistema energético ainda são enormes. A maioria dos esforços de transição da indústria energética têm-se concentrado, até agora, no hardware: novas infra-estruturas de baixo carbono que substituirão os sistemas antigos com utilização intensiva de carbono. Outro instrumento crucial para a mudança, as tecnologias digitais da próxima geração, especialmente a inteligência artificial, têm recebido muito pouca atenção e financiamento (IA). Estas tecnologias potentes têm o potencial de acelerar a transição energética ao serem adotadas em escala mais rápida do que as novas soluções de hardware. Três tendências principais impulsionam o potencial da IA ​​para acelerar a transição energética:

  • Os processos históricos de descarbonização estão apenas a começar nas indústrias com utilização intensiva de energia, incluindo energia, transportes, indústria pesada e edifícios, graças à crescente pressão pública para reduções rápidas das emissões de CO2. Essas transformações são enormes em escopo. De acordo com a BloombergNEF, serão necessários entre 92 biliões e 173 biliões de dólares em investimentos em infra-estruturas para atingir emissões líquidas zero até 2050, apenas no sector da energia. Portanto, mesmo aumentos modestos na energia limpa e na flexibilidade, eficiência ou capacidade industrial de baixo carbono podem resultar em triliões de dólares em valor e poupanças.
  • O sector da energia está a evoluir para o principal pilar do fornecimento de energia mundial, à medida que a electricidade apoia mais indústrias e aplicações. Para garantir que as redes energéticas possam ser geridas de forma segura e fiável, aumentar a implantação de energias renováveis ​​significará que mais energia será fornecida por fontes esporádicas (como solar e eólica), aumentando a necessidade de previsão, coordenação e consumo flexível.
  • A rápida expansão da geração distribuída de energia, do armazenamento distribuído e de melhores capacidades de resposta à procura é impulsionada pela mudança para sistemas energéticos de baixo carbono. Estas capacidades devem ser coordenadas e integradas através de redes eléctricas mais transaccionais e em rede.

O sistema energético e os setores com utilização intensiva de energia enfrentam enormes obstáculos estratégicos e operacionais para navegar nestas tendências. A IA pode ajudar as partes interessadas do sistema energético a identificar padrões e insights em dados, aprendendo com a experiência e melhorando o desempenho do sistema ao longo do tempo, e prevendo e modelando resultados potenciais de situações complexas e multivariadas, estabelecendo uma camada de coordenação inteligente em toda a geração, transmissão e uso de energia. Múltiplas áreas da transição energética já estão a registar benefícios tangíveis da IA, incluindo a previsão de energias renováveis, operações e otimização da rede, ativos de energia distribuída e coordenação da gestão do lado da procura, bem como inovação e descoberta de materiais. Embora a utilização da IA ​​no sector energético tenha até agora se mostrado promissora, não houve muita inovação ou aceitação generalizada. Isto oferece uma oportunidade fantástica para acelerar a transição para o futuro sistema energético de que necessitamos – um sistema livre de emissões, extremamente eficiente e interligado. A capacidade da IA ​​para acelerar a transição energética global é muito maior do que se pensava anteriormente, mas este potencial só pode ser concretizado se a inovação, a adoção e a colaboração da IA ​​em toda a indústria forem aumentadas.

Como a IA é fundamental para a resiliência da rede de energia renovável?

  • Para gerir redes descentralizadas durante a mudança global para energias renováveis, será necessária tecnologia de inteligência artificial (IA).
  • A IA pode otimizar o uso e o armazenamento de energia para reduzir custos e equilibrar as necessidades de oferta e demanda de eletricidade em tempo real
  • A governança tecnológica será necessária para garantir fontes elétricas resilientes, promover a inovação e democratizar o acesso

A fim de resolver os desafios atuais utilizando tecnologia do passado, foram feitos apelos ao investimento governamental em infraestruturas de rede para modernizar longas linhas de transmissão a partir de uma fonte de fornecimento de energia centralizada. Já existe um substituto superior e mais progressivo, a Inteligência Artificial (IA) que faz uso de fontes de energia renováveis ​​distribuídas. Portanto, a IA é fundamental para a promoção das energias renováveis ​​de duas maneiras:

AI's Assistance in Promoting Renewable Energy

Fig.3: Assistência da IA ​​na promoção de energias renováveis

  • Maior complexidade em energia renovável Mais energia será gerada a partir de fontes renováveis ​​e distribuídas à medida que o mundo se tornar mais eletrificado. Considere baterias, painéis solares privados, parques eólicos e microrredes. Mesmo que sejam vantajosos para a sustentabilidade, irão complicar as infra-estruturas energéticas em todo o mundo. Será necessário um delicado ato de equilíbrio para combinar a oferta e a procura sem colocar a rede de joelhos durante os próximos 10 a 15 anos, como resultado da crescente adoção de veículos elétricos, da eletrificação dos sistemas de aquecimento e da proliferação de recursos energéticos distribuídos. (DERs), como turbinas eólicas e painéis solares. Use a Austrália como ilustração. Até 2030 e 2050, espera-se que 30% e 60% das estruturas residenciais, comerciais e industriais do país utilizem energia solar. Situações semelhantes estão a ocorrer em todo o mundo, à medida que mais consumidores comerciais, governamentais e residenciais produzem a sua própria energia utilizando painéis solares, armazenam-na em baterias para utilização em veículos eléctricos ou devolvem-na à rede. As nossas projeções mostram que, até 2030, haverá 89 milhões de dispositivos de armazenamento de energia na rede na Europa, acima da estimativa atual de 36 milhões (ver imagem abaixo). As redes eléctricas podem tornar-se caóticas se milhões de dispositivos individuais publicarem e descarregarem electricidade. Por outras palavras, os serviços públicos terão de mudar os seus modelos de negócio, uma vez que a dependência de um único serviço público para produzir e transmitir electricidade está a diminuir. Em breve, não serão a única fonte de energia; em vez disso, eles serão obrigados a manter a rede equilibrada, transferindo elétrons de várias fontes e sistemas de armazenamento para fornecer energia onde for necessária, segundo a segundo, de forma eficiente.
  • IA para equilibrar milhões de redes As fontes de energia descentralizadas podem transferir qualquer eletricidade extra que gerem para a rede utilizando software de IA, e as empresas de serviços públicos podem encaminhar essa eletricidade para onde for necessária. Semelhante ao armazenamento de energia, que pode manter energia extra quando a procura é baixa em casas, escritórios, carros e outras estruturas, a IA pode utilizar essa energia quando a geração é insuficiente ou impossível. Existem muitas peças móveis nesse sistema; portanto, coordenação, previsão e otimização são necessárias para manter a estabilidade da rede. Um utilitário é como um maestro que mantém a orquestra no tempo enquanto a IA compõe a sinfonia em tempo real, se você imaginar os DERs como músicos individuais. Como resultado, um sistema baseado em IA pode transformar o jogo. Uma rede que seja mais resiliente e flexível quando ocorrem eventos imprevistos é o resultado da mudança de um sistema com infraestrutura pesada para um sistema centrado na IA. A previsão e o controle agora são possíveis em segundos, em vez de dias.

No que diz respeito aos recursos energéticos descentralizados, os serviços públicos, os decisores e as agências reguladoras devem começar a considerar os seus respectivos papéis. A gestão e coordenação da manta de retalhos de produtores de energia distribuída serão essenciais. Os serviços públicos podem assumir a liderança nesta situação, uma vez que lidam com um número decrescente de clientes que compram electricidade à medida que mais casas e empresas começam a produzir a sua própria energia graças aos painéis solares nos telhados e tecnologias semelhantes. Não há tempo a perder porque as alterações climáticas continuarão a trazer condições meteorológicas mais extremas ao mundo. A actual situação económica e as prolongadas discussões políticas como a prevista nos EUA provavelmente arrastarão os investimentos necessários. O melhor a fazer é não investir em redes centralizadas com a sua rede de longos cabos e transformadores; em vez disso, os governos deveriam fazer planos para uma rede onde as comunidades e os edifícios produzam a sua própria electricidade, que é depois gerida em tempo real por software. O financiamento público da produção de energia renovável, bem como os incentivos para uma produção de energia mais dispersa na indústria privada e nas habitações, devem ser considerados pelos decisores políticos. E para garantir a interoperabilidade, a transparência e o acesso justo em todo o ambiente energético, precisamos de uma governação do software de IA aprovada a nível mundial.

Conclusão

Uma abordagem proativa e cooperativa à governação tecnológica relacionada com a IA seria vantajosa para o setor energético. Os próximos anos serão importantes para promover a inovação nesta área e democratizar o acesso a tecnologias inovadoras de baixo carbono em todo o sistema energético. Se não forem previamente aceites, a indústria deve implementar normas de dados comuns como condição para isso e para a digitalização em geral. O aumento da cooperação entre os intervenientes na indústria energética pode assumir a forma de projetos conjuntos de I&D, partilha de técnicas de melhores práticas para pôr em prática conceitos de IA e apresentação de exemplos de utilização. A colaboração também poderia promover a confiança entre os criadores de tecnologia de IA, consumidores, reguladores e outras partes interessadas que interagem com os sistemas de IA. Os reguladores e operadores de redes devem considerar o potencial de uma variedade de tecnologias digitais (tais como aprendizagem automática, computação quântica, tecnologia blockchain, entre outras) para melhorar a forma como as redes são operadas à medida que a gestão e operação das redes se tornam mais complexas, particularmente no nível da rede de distribuição. A necessidade de repensar a gestão da rede e uma oportunidade para desenvolver designs novos e mais descentralizados para o acesso à rede, operação e decisões de gestão surgem à medida que o sistema energético se descarboniza e descentraliza. O método tradicional de gestão manual de comando e controle (com um operador de sistema central) deve ser substituído por uma tomada de decisão descentralizada e baseada em tecnologia, permitindo uma tomada de decisão mais rápida e adicionando automaticamente ativos distribuídos menores à rede (usando, por exemplo, blockchain , identidade digital e contratos inteligentes). Os governos poderiam encomendar ou oferecer incentivos a organismos públicos e industriais para gerirem e financiarem bases de dados centrais de dados industriais como parte desta disseminação equitativa de dados. Esses conjuntos de dados permitiriam o treinamento de algoritmos de IA e poderiam possivelmente diminuir vieses de algoritmos que são frequentemente causados ​​por dados esparsos ou de baixa qualidade.

O aumento da procura por sistemas energeticamente eficientes e duráveis ​​levou ao aumento da procura por sistemas de recolha de energia. A Data Bridge Market Research analisa que o mercado de sistemas de colheita de energia apresentará um CAGR de 10,04% para o período de previsão de 2021-2028. Isto significa que o valor de mercado actual aumentará para 1.042,5 milhões de dólares até 2028. Um sistema de recolha de energia é a tecnologia que converte a energia do ambiente em energia eléctrica utilizável. Este sistema extrai pequenas quantidades de energia do ambiente que de outra forma seriam perdidas na forma de calor, luz, som ou vibração. A América do Norte domina o mercado devido ao aumento da adoção e aplicação de sistemas de captação de energia em edifícios e eletrodomésticos. O crescimento no setor industrial e automotivo também impulsionou o crescimento do mercado em todos os países desta região. Os EUA são o maior contribuinte aqui.

Para saber mais sobre o estudo, acesse: https://www.databridgemarketresearch.com/pt/reports/global-energy-harvesting-system-market


Depoimentos de clientes