개요
최근 몇 년간 자율주행과 로보택시(Robotaxis)라는 이름이 자동차 산업의 화두 중 하나가 되었습니다. 자동차, 운송, 광범위한 모빌리티 시장은 사회적, 기술적, 경제적 변화를 겪고 있으며 사람과 제품이 이동하는 방식을 근본적으로 변화시키고 있습니다. 지속적인 인구 증가, 도시화, 환경 문제 속에서 새로운 형태의 이동성은 미래의 인구 허브와 경제 활동을 지원하는 데 매우 중요합니다.
2022년부터 2029년까지의 예측 기간에 따르면 자율주행차 시장은 36.16%의 성장률로 상당한 성장을 경험할 것으로 예상됩니다. Data Bridge Market Research의 보고서는 시장에 대한 포괄적인 분석과 통찰력을 제공하며, 이 기간 동안 시장 성장에 큰 영향을 미칠 것으로 예상되는 요소를 강조합니다.
소프트웨어 플레이어를 선도하는 거대 기술 기업과 새로운 모빌리티 스타트업도 완전히 새로운 미래 모빌리티 시대의 성과를 거두기 직전입니다. 이제 자동차는 다양한 기능을 제공하는 플랫폼으로 변모하고 있습니다. 따라서 자율주행차는 기존 자동차에 비해 훨씬 더 소프트웨어 중심의 제품이 되어가고 있습니다. 자율주행차는 사람의 개입 없이 주변 환경을 감지하고 작동할 수 있는 차량을 말합니다. 특히 센서 기술, LiDAR, 4D 레이더 이미징의 발전은 완전 자율 차량을 위한 길을 열어주고 있습니다. 이러한 기술은 차량이 적시에 결정을 내릴 수 있도록 특정 데이터를 실시간으로 수집하는 데 사용됩니다.
인간 승객은 언제든지 차량을 제어할 필요가 없으며 인간 승객이 그 자리에 있어야 할 필요도 없습니다. 기존 제조업체와 공급업체는 개발 주기를 지속적으로 단축하고 새로운 소프트웨어 시대로의 불가피한 전환을 따라잡기 위해 극도로 열심히 노력하고 있습니다. 그러나 소프트웨어 업계에서 주로 알려진 협업적 민첩한 작업 모델과 보다 혁신적인 협력 관리 접근 방식은 이러한 문제를 해결하고 이를 기회로 전환할 수 있는 길을 열어줍니다.
자율주행차란 무엇인가요?
딥러닝은 자율주행차 자동화 부분의 핵심입니다. AV는 다양한 교육 모델과 실시간 데이터 수집을 기반으로 계산적인 결정을 내릴 수 있습니다. 최근 딥러닝과 인공지능의 발전으로 자율주행차는 위험도가 높은 상황에 대응하고 기상 조건으로 인한 장애물 추적 문제에 대응할 수 있게 되었습니다. 자율주행차 또는 무인자동차는 센서, 카메라, 레이더, 인공지능(AI) 등을 조합해 사람 없이 목적지 간을 이동하는 차량이다. 자율주행차를 개발 및/또는 테스트하는 회사로는 Audi, BMW, Ford, Google, General Motors, Tesla, Volkswagen 및 Volvo가 있습니다.
전세계 자율주행차 시장 시나리오
자율주행차는 전 세계적으로 소비자의 모빌리티 경험에 혁명을 일으키고 있습니다. 기술이 발전함에 따라 자율주행차는 사람이 운전하는 차량보다 더 안전해질 것입니다. 미국에서는 피로, 사람의 실수, 음주 운전으로 인해 매년 자동차 사고로 30,000명이 목숨을 잃습니다.
오늘날 대부분의 자동차에는 기본 ADAS(고급 운전자 지원 시스템) 기능이 포함되어 있으며 이러한 동작 없이 작동할 수 있어 잠재적으로 수천 명의 생명을 구할 수 있습니다. 대부분의 자율주행차에는 자동 긴급 제동 시스템이 장착되어 있는데, 이는 차량이 급정거 등 위험에 접근할 때를 감지하도록 설계되었습니다. 또한 자동 비상 제동 시스템은 도로 위의 보행자, 자전거 운전자 또는 기타 차량을 감지하고 대응하도록 구성할 수 있습니다. 수십억 명의 사람들에게 더 안전하고 깨끗하며 편리한 이동성을 제공하기 위해 2018년 Waymo에서 최초의 자율주행차가 출시되었습니다. Waymo의 600대의 자율주행 차량은 어떤 경쟁사보다 더 많은 자율 주행 마일을 주행했습니다. 실제로 2018년 10월에 이 차량은 마운틴뷰(CA), 오스틴(TX), 커클랜드(WA) 및 피닉스(AZ)의 거리에 초점을 맞추었지만 25개 도시의 공공 도로에서 1,000만 마일 이상을 주행했습니다. . 2018년 8월, 차량 호출 회사인 Lyft는 고객이 모바일 앱을 사용하여 라스베이거스에서 5,000회 이상의 자율주행 차량 요금을 지불했다고 발표했습니다. 이 서비스는 지난 1월 라스베가스에서 30대의 BMW 차량으로 시작되었지만 당시 회사 보유 차량은 75대였습니다.
자동차 제조업체가 채택한 주요 전략
자율주행차의 자동화 수준
SAE(Society of Automotive Engineers)는 미국 교통부가 채택한 0(완전 수동)부터 5(완전 자율)까지의 운전 자동화 수준을 6단계로 정의합니다.
레벨 0(운전 자동화 없음)
|
자동화 기능이 없는 차량으로 운전자가 차량을 완전히 제어합니다.
|
레벨 1(운전자 지원)
|
크루즈 컨트롤과 같은 하나 이상의 주요 자동화 기능을 갖추고 있지만 운전자가 다른 모든 작업을 수행해야 하는 차량
|
레벨 2(부분 주행 자동화)
|
적응형 크루즈 컨트롤과 같은 두 가지 이상의 주요 기능을 갖춘 차량입니다. 차량은 조향과 가속/감속을 모두 제어할 수 있습니다. 인간이 운전석에 앉아 언제든지 차량을 제어할 수 있기 때문에 자동화는 자율주행에 미치지 못합니다. Tesla Autopilot 및 Cadillac(General Motors) Super Cruise 시스템은 모두 레벨 2에 해당합니다.
|
레벨 3(조건부 운전 자동화)
|
운전자가 교통 및 환경 조건에 따라 차량의 중요한 안전 기능을 포기할 수 있는 기능을 갖춘 차량입니다. 전환 기간 이후에는 자동화 기능의 제약으로 인해 운전자가 차량 제어권을 인수할 것으로 예상됩니다.
|
레벨 4(고도 주행 자동화)
|
레벨 4 차량은 자율 주행 모드에서 작동할 수 있으며 레벨 3 자동화와 레벨 4 자동화의 주요 차이점은 레벨 4 차량이 문제가 발생하거나 시스템 오류가 있는 경우 개입할 수 있다는 것입니다.
예를 들어,
|
레벨 5(완전 운전 자동화)
|
운전자 유무에 관계없이 여행 내내 도로 상태를 모니터링하고 안전에 중요한 작업을 수행하는 완전 자율 차량입니다.
|
출처: 바다
자율주행차 또는 자율주행자동차의 핵심기술
고도로 발달된 컴퓨터 과학, 패턴 인식, 지능형 제어 기술의 산물인 자율주행차에는 자동제어, 건축, 인공지능, 컴퓨터 비전 등 다양한 기술이 집약되어 있습니다.
자율주행차가 직면한 과제
레벨 5 자율주행차가 직면한 주요 장애물은 진정한 레벨 5 자율주행차를 만들 만큼 기술이 충분히 발전하지 않았다는 점입니다. General Motors의 크루즈 테스트 차량과 Nuro 차량은 레벨 5 차량 개발의 첫 번째 단계에 불과합니다. 무인자동차에 대한 대중의 불신은 레벨 5 자율주행차가 극복해야 할 또 다른 장애물이다. 현재 레벨 3 차량은 사고에 연루되어 있으며, 이는 레벨 5 차량이 완전히 자율적이기 때문에 안전성에 대한 진정한 우려를 불러일으킵니다. 이 외에도 무인 자동차를 위한 완전 자율 시스템을 설계하는 데는 여전히 많은 과제에 직면해 있습니다.
자율주행차는 신호등이 켜졌을 때 교통경찰이 차량을 흔드는 등의 비정상적인 상황을 해석하는 데 어려움을 겪습니다. 모든 시나리오를 미리 코딩하는 것은 불가능하기 때문에 간단한 규칙 기반 프로그래밍이 항상 작동하는 것은 아닙니다. 따라서 도로 위의 "무인차 또는 자율" 차량에 대한 아이디어는 자율주행차에 대한 많은 제어 관련 문제와 관리해야 할 많은 이동 요소가 있기 때문에 모든 생활 영역의 사람들에게 흥미를 불러일으켰습니다. 운전하는 동안 동시에 조절됩니다.
자율주행차가 준비된 최고의 국가
운전자 지원 기술과 자율주행 시스템을 포함한 자동차 기술의 지속적인 발전은 훨씬 더 큰 안전 이점을 제공하는 것을 목표로 합니다. 세상은 자율주행차에 의해 점령되었으며, 그 발전은 믿을 수 없을 만큼 발전하고 있습니다. 네덜란드는 우수한 도로 인프라, 강력한 지원 정부, 열정적인 전기 자동차 채택으로 인해 자율주행차 준비 지수에서 신흥 선두주자로 여겨지고 있지만, 싱가포르는 주로 도로 개정으로 인해 미국을 제치고 2위를 차지했습니다. 공공도로에서 자율주행차의 시험을 허용하는 교통법.
표 1: 자율주행차 준비 지수
국가
|
기술 및 혁신 순위
|
인프라 순위
|
정책 및 입법 순위
|
소비자 수용
|
종합 순위
|
네덜란드
|
4
|
1
|
삼
|
2
|
1
|
싱가포르
|
8
|
2
|
1
|
1
|
2
|
우리를
|
1
|
7
|
10
|
4
|
삼
|
스웨덴
|
2
|
6
|
8
|
6
|
4
|
영국
|
5
|
10
|
4
|
삼
|
5
|
독일
|
삼
|
12
|
5
|
12
|
6
|
캐나다
|
6
|
11
|
7
|
7
|
7
|
출처: 지리공간 미디어 및 커뮤니케이션
자율주행차의 장점
표 2: 자율주행차의 잠재적 이점 및 비용
이익
|
비용/문제
|
운전자 스트레스 감소 및 증가
생산력
|
추가 차량 장비, 서비스 및 수수료가 필요합니다.
|
택시비 절감
서비스 및 상업 운송 운전사
|
시스템으로 인한 추가 충돌
실패, 군집주행, 더 높은 교통 속도, 추가적인 위험 감수, 전체 차량 이동 증가
|
목적지 주차 수요 감소
|
더 높은 도로 설계 및 유지 관리 표준이 필요할 수 있습니다.
|
자동차 공유 및 승차 공유를 촉진하여 총 차량 소유 및 여행, 관련 비용을 줄일 수 있습니다.
|
자율 주행에 대한 낙관적인 예측은 다른 교통 개선 및 관리 전략을 방해할 수 있습니다.
|
원천:
자율주행차는 운전자의 스트레스와 지루함을 줄이고 생산성을 높여 승객이 여행 중에도 일을 할 수 있도록 해준다. 그러나 안전을 위해 탑승자는 안전벨트를 착용해야 하며, 차량 내 침대 사용을 제한해야 하며, 여느 밀폐공간과 마찬가지로 차량 내부도 어수선하고 더러워지기 쉽습니다. 또한 자율주행차는 어떤 이유로든 운전할 수 없거나 운전해서는 안되는 사람들에게 독립적인 이동성을 제공할 수 있습니다. 이는 여행자에게 직접적인 혜택을 주며 교육 및 취업 기회에 대한 접근성을 향상시켜 생산성을 높이고 가족과 친구의 운전 부담을 줄일 수 있습니다.
자율주행차와 관련된 과제
자율주행차가 제대로 작동하려면 다양한 장비와 서비스가 필요합니다. 고장은 치명적일 수 있으므로 자율주행차에는 전문가가 설치하고 유지 관리하는 강력하고 중복된 구성 요소가 필요하므로 유지 관리 비용이 증가합니다. 현재 원격 시동, 능동 차선 보조 장치, 안전 카메라와 같은 옵션 차량 액세서리의 가격은 일반적으로 수천 달러이며, OnStar 및 TomTom과 같은 내비게이션 및 보안 서비스 가입 비용은 연간 수백 달러입니다. 제한된 자율 운영을 제공하는 Tesla의 완전 자율 주행(FSD) 서비스로 업그레이드하는 데 드는 비용은 USD 15,000이며, 2022년 소유자는 Tesla의 가용성 및 이점에 대한 허위 광고로 Tesla를 고소했습니다. 차량 소유자는 아마도 빈번한 소프트웨어 업데이트와 내비게이션 매핑 서비스에 가입해야 할 것입니다.
대부분의 자율주행차는 길을 찾기 위해 LiDAR(빛 감지 및 거리 측정), 카메라, 레이더의 세 가지 기술을 사용합니다. 운전할 때 레이더 센서는 주변 물체의 전파 반사를 감지합니다. 그래서 전파가 반사되는 데 걸리는 시간을 빠르게 계산하면 자율주행차가 근처 물체의 근접성을 측정할 수 있습니다. 그러나 근접한 두 대 이상의 차량에서 전송되는 전파가 서로 간섭하여 잘못된 신호를 발생시킬 가능성이 있습니다. 이미지 분류는 CNN(컨볼루션 신경망)을 훈련하여 객체를 인식하고 분류하는 방식으로 수행됩니다. CNN의 문제는 모델이 모든 객체를 캡처하지 못할 가능성이 높기 때문에 여러 객체가 포함된 이미지에 대한 최상의 솔루션이 아니라는 것입니다. 그러나 GPS(Global Positioning System)를 사용하면 다른 자율주행차의 정확한 위치를 감지할 수 있지만 벽, 건물, 잔해, 나무 등 소수의 물체를 구별하지 못하는 경우도 있습니다. 자율주행차 또는 자율주행차는 자신의 신호를 나머지 신호와 구별할 수 있어야 하므로 이는 향후 몇 년 동안 가장 큰 과제 중 하나가 될 것입니다.
이 법안은 자율주행의 가장 필수적인 특징 중 하나이다. 많은 경우, 주법과 연방법은 이러한 자동차로 인한 사고에 대한 책임이 누구에게 있는지에 대해 혼란을 겪고 있습니다. 일상적인 자동차 사고로 인한 신체 상해 청구에서 누가 잘못되었는지 판단하는 것은 이미 충분히 어렵습니다. 자율주행차의 경우 운전자에 대한 뚜렷한 정의가 없기 때문에 누가 사고를 냈는지, 그 영향은 무엇인지 파악하기가 더 어렵다. 이 외에도 대부분의 자율주행차에서는 소프트웨어가 주요 의사결정자이자 운영자입니다. 단, 제조사에 따라 디자인이 다를 수 있습니다.
컴퓨터 비전 자율주행 모델에는 실시간 물체 감지 기능이 탑재되어 있지만, 날씨, 조명, 위치에 따라 성능이 달라질 가능성이 있습니다. 자율주행차는 혹시 모를 사고를 예방하기 위해 다양한 데이터세트가 많이 필요합니다. 위의 변수로 인해 발생합니다. 자율주행차는 LiDAR 센서와 카메라를 3차원 지도 및 컴퓨터 비전 기술의 데이터와 결합하여 거리를 계산하고 교통 신호, 다른 차량, 보행자를 감지할 수 있습니다. 승객과 차량의 안전을 보장하기 위해서는 깊이 추정이 필수적입니다. LIDAR, 카메라 레이더 등 여러 다른 도구가 중요한 역할을 하지만 스테레오 비전으로 백업하는 것이 도움이 됩니다. 그러나 렌즈와 센서 사이의 거리가 차량마다 다를 수 있으므로 카메라 배열과 같은 다른 많은 문제가 발생할 여지가 있어 깊이 추정 시스템이 더욱 어려워집니다.
주요 국가의 규제 당국
자율주행차 시장에 코로나19가 미치는 영향
코로나19(COVID-19) 팬데믹은 일상생활에 엄청난 변화를 가져왔습니다. 이에 자동차와 운송 부문에서는 소비자 행동의 변화가 경제 전반에 걸쳐 자율주행차(AV) 기술 도입에 어떤 영향을 미칠 수 있는지 주목하고 있습니다. . 코로나19 팬데믹은 생산부터 R&D까지 여러 OEM의 운영에 영향을 미쳤습니다. AV 개발 및 출시에 단기적인 중단이 있을 수 있지만, 이러한 중단으로 인해 소비자 부문 내에서 AV 기술 채택을 위한 새로운 기회가 열릴 수 있으며 AV 기술이 대응의 중요한 구성 요소로 간주되므로 다양한 상업 부문에서 채택을 가속화할 수 있습니다. 긴급 상황. 또한 코로나19는 장기적으로 AV 기술에 도움이 될 수 있는 방식으로 대중교통에 대한 소비자의 태도를 바꾸고 있습니다. 신차 구입에 대한 소비자의 망설임으로 인해 OEM이 AV 개발을 중단하게 될 수도 있지만, 물류 회사, 배달 회사 및 식품 서비스 업계의 AV 채택 가능성은 OEM 및 기타 AV 참가자에게 AV 기술을 추진해야 하는 시장 요구를 제공할 수 있습니다. 다음 레벨. 현재 건강을 유지하는 것이 동료 시민과 멀리 떨어져 있는 것을 의미하는 세상에서 자율 주행 장거리 트럭, 도시 간 배달 차량, 로봇 음식 배달이 그 어느 때보다 매력적으로 보입니다.
코로나19로 인해 물품 운송의 인간적 측면이 부각되면서 물류업체에는 실시간 자율주행 시스템이 필요합니다. 비용 절감과 상품의 논스톱 운송이 요인이기는 하지만, 상품 배송을 일시 중지할 수 있는 코로나19의 능력은 상품 운송의 인적 요소를 국가 상품 공급망의 약한 고리로 부각시켰습니다. 긴급 상황에서는 공급망 전반에 걸쳐 상품을 효율적이고 안정적으로 운송하는 능력이 그 어느 때보다 중요하며, 특히 공황 구매 및 공급 제약 상황에서는 더욱 그렇습니다. 또한 자동차 부문은 적시 배송에 의존하기 때문에 트럭 운송 및 물류 중단으로 인한 공급 중단을 감당할 수 없습니다. 신차 및 중고차 구매에 대한 소비자 수요로 인해 소비자 부문에서 AV 시스템 채택이 일시적으로 지연되었을 수 있지만, 코로나19 팬데믹은 일상 상거래와 물류 산업 전반에 걸쳐 AV가 얼마나 중요한지 강조했습니다.
결론
자율주행차(AV)는 안전, 윤리 등을 기반으로 한 고객 수용 문제로 인해 가장 파괴적인 기술 혁신 중 하나로 간주됩니다. AV는 세계가 차량과 인간의 이동성을 보는 방식을 변화시키고 있으며 자동차 산업에서 중요한 기술 혁신이 되고 있습니다. 이동성 증가, 자원 소비량 감소, 배출량 감소, 주차 공간 필요성 감소, 교통 안전 증가 등 다양한 이점을 가져올 수 있습니다. 유용한 애플리케이션의 출현으로 AV는 다양한 교통 문제를 해결할 수 있었지만 특정 교통 상황, 차량 유지 관리 및 자율 주행 모드를 활용할 수 없는 경우 장기적인 인간 상호 작용이 필요하다는 점에는 동의합니다.
자율주행차 시장에 대해 더 자세히 알고 싶으시면 아래 링크를 방문해주세요.
2022년부터 2029년까지의 예측 기간에 따르면 반자율 및 자율주행 시장은 예상 성장률 3.8%로 상당한 성장을 경험할 것으로 예상됩니다. Data Bridge Market Research의 보고서는 시장에 대한 포괄적인 분석과 통찰력을 제공하며, 이 기간 동안 시장 성장에 큰 영향을 미칠 것으로 예상되는 요소를 강조합니다.
보고서의 전체 버전에서 Data Bridge는 가치(백만 달러) 측면에서 시장 규모를 제공하거나 고객 요구 사항에 따라 사용자 정의합니다.
DBMR은 전 세계적으로 Fortune 500대 기업의 40% 이상에 서비스를 제공했으며 5000개 이상의 고객 네트워크를 보유하고 있습니다. 우리 팀은 귀하의 질문에 기꺼이 도움을 드릴 것입니다. 방문하다, https://www.databridgemarketresearch.com/ko/contact
문의하기