Global Fraud Detection Transaction Monitoring Market
시장 규모 (USD 10억)
연평균 성장률 :
%

![]() |
2025 –2032 |
![]() |
USD 20.54 Billion |
![]() |
USD 99.80 Billion |
![]() |
|
![]() |
Global Fraud Detection Transaction Monitoring Market Segmentation, By Offering (Solution and Services), Function (KYC/Customer Onboarding, Case Management, Watch List Screening, Dashboard & Reporting, and Others), Deployment (On-Premise and Cloud), Organization Size (Large size organizations and Small & Medium Sized Organization), Application (Payment Fraud Detection, Money Laundering Detection, Account Takeover Protection, Identity Theft Prevention, and Others), Vertical (Banking, Financial Services, & Insurance (BFSI), Retail, IT & Telecommunication, Government & Defense, Healthcare, Manufacturing, Energy & Utilities, and Others) - Industry Trends and Forecast to 2031.
Fraud Detection Transaction Monitoring Market Analysis
Global fraud detection transaction monitoring market is experiencing robust growth due to increasing financial transactions and sophisticated cyber threats. Advanced technologies such as AI and machine learning are being integrated to enhance fraud detection accuracy and reduce false positives. Regulatory pressures and the need for compliance are driving adoption across industries. Key market players include companies specializing in cybersecurity and data analytics. The market is expected to continue expanding as businesses seek to protect themselves from evolving fraud tactics.
Fraud Detection Transaction Monitoring Market Size
Global fraud detection transaction monitoring market is expected to reach a value of USD 81.91 billion by 2031 from 17.01 billion in 2023, growing at a CAGR of 21.8% during the forecast period 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and PESTLE analysis.
Fraud Detection Transaction Monitoring Market Trends
‘Integration of Big Data’
사기 탐지에 빅데이터를 통합하면 조직에서 다양한 출처의 광범위한 데이터 세트를 분석하여 사기 활동을 시사하는 패턴을 식별할 수 있습니다. 빅데이터 분석을 사용하면 기업은 기존 방식에서는 놓칠 수 있는 숨겨진 통찰력을 발견할 수 있습니다. 예측 분석은 과거 데이터를 사용하여 잠재적인 사기 행위를 발생하기 전에 예측함으로써 이러한 기능을 향상시킵니다. 이러한 추세는 탐지율을 개선할 뿐만 아니라 조직에서 예방 조치를 구현할 수 있도록 합니다. 궁극적으로 빅데이터를 활용하면 기업이 사기 방지에 접근하는 방식이 바뀌어 더욱 효과적이고 대응성이 높아집니다.
보고 범위 및 사기 감지 거래 모니터링 시장 세분화
보고서 메트릭 |
사기 감지 거래 모니터링 주요 시장 통찰력 |
다루는 세그먼트 |
|
적용 국가 |
미국, 캐나다, 멕시코, 독일, 영국, 프랑스, 이탈리아, 스페인, 러시아, 터키, 네덜란드, 노르웨이, 핀란드, 덴마크, 스웨덴, 폴란드, 스위스, 벨기에, 유럽의 나머지 지역, 중국, 일본, 인도, 한국, 호주, 뉴질랜드, 인도네시아, 태국, 말레이시아, 싱가포르, 필리핀, 대만, 베트남, 아시아 태평양의 나머지 지역, 브라질, 아르헨티나, 남미의 나머지 지역, UAE, 사우디 아라비아, 남아프리카, 이집트, 이스라엘, 오만, 바레인, 쿠웨이트, 카타르, 그리고 중동 및 아프리카의 나머지 지역 |
주요 시장 참여자 |
Amazon Web Services, Inc.(미국), LexisNexis(Reed Elsevier 자회사)(미국), Mastercard(미국), TATA Consultancy Services Limited(인도), Fiserv, Inc.(미국), SAS Institute Inc.(미국), ACI Worldwide(미국), Oracle(미국), NICE(이스라엘), FICO(미국), SymphonyAI(미국), UBIQUITY(미국), Verafin Solutions ULC(Nasdaq Inc. 자회사)(캐나다), GB Group plc('GBG')(영국), INFORM SOFTWARE(독일), Quantexa(영국), Sum and Substance Ltd(영국), DataVisor, Inc.(미국), Hawk(독일), Featurespace Limited(영국), INETCO Systems Ltd.(캐나다), Abra Innovations, Inc.(미국), Seon Technologies Ltd.(헝가리), Feedzai(포르투갈), Sanction Scanner(영국) 등 |
시장 기회 |
|
부가가치 데이터 |
Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, PESTLE 분석이 포함됩니다. |
사기 감지 거래 모니터링 시장 정의
사기 탐지 및 거래 모니터링은 금융 기관과 기업이 거래 내 사기 활동을 식별하고 방지하기 위해 사용하는 시스템과 프로세스를 말합니다. 이러한 시스템은 거래 데이터를 지속적으로 분석하여 무단 액세스, 자금 세탁 또는 신원 도용과 같이 사기를 나타낼 수 있는 비정상적인 패턴이나 동작을 탐지합니다. 사기 탐지 및 거래 모니터링 솔루션 시장은 온라인 거래량 증가, 사기 전술의 복잡성, 금융 범죄를 줄이기 위한 엄격한 규제 요구 사항에 의해 주도됩니다. 조직은 AI, 머신 러닝, 실시간 분석과 같은 첨단 기술을 사용하여 사기 활동을 식별하고, 규정을 준수하고, 자산을 보호하는 데 있어 정확성과 효율성을 높입니다.
사기 탐지 거래 모니터링 시장 동향
운전자
- 새로운 위협에 적응할 수 있는 강력한 탐지 시스템에 대한 필요성 증가
금융 사기 계획이 계속 진화하고 더욱 정교해짐에 따라 새로운 위협에 효과적으로 적응할 수 있는 강력한 사기 탐지 시스템에 대한 필요성이 커지고 있습니다. 기존의 사기 탐지 방법은 종종 사기 전술의 빠른 변화에 발맞추는 데 어려움을 겪기 때문에 금융 기관과 기업이 고급 탐지 시스템을 구현하는 것이 필수적입니다. 이러한 시스템은 인공 지능 및 머신 러닝과 같은 최첨단 기술을 활용하여 대량의 거래 데이터를 실시간으로 분석하고 사기 활동을 나타낼 수 있는 패턴과 이상을 식별해야 합니다.
예를 들어,
빌 & 멜린다 게이츠 재단이 게시한 블로그에 따르면, 2024년 2월, 새로운 오픈소스 사기 탐지 소프트웨어인 타자마(Tazama)가 금융 거래에서 사기 및 자금 세탁을 모니터링하는 데 도움이 되도록 출시되었습니다. 이 소프트웨어는 종종 값비싼 상업적 사기 방지 시스템에 어려움을 겪는 저소득 및 중소득 국가에 비용 효율적인 솔루션을 제공하여 금융 포용성을 지원하는 것을 목표로 합니다. 타자마를 사용하면 중앙은행과 금융 기관이 고객을 더 잘 보호하고 거래 무결성을 보장할 수 있습니다. 이 소프트웨어의 오픈소스 특성 덕분에 글로벌 협업을 통해 기능을 개선하고 진화하는 위협에 적응하는 강력한 탐지 시스템에 대한 증가하는 수요를 해결할 수 있습니다.
- 신원 검증 및 인증에 대한 집중도 증가
신원 확인 및 인증에 대한 강조가 높아짐에 따라 사기 탐지 및 거래 모니터링의 환경이 변화하고 있습니다. 생체 인증, 다중 요소 검증, AI 기반 신원 분석과 같은 첨단 기술을 통합함으로써 금융 기관은 사용자 신원을 보다 정확하게 검증하고 사기 활동을 탐지할 수 있습니다. 이 강력한 접근 방식은 무단 액세스 및 사기 거래와 관련된 위험을 완화하여 금융 시스템의 전반적인 보안 및 안정성을 향상하는 데 도움이 됩니다. 신원 확인 기술이 발전함에 따라 사기 탐지 메커니즘을 강화하고 거래 모니터링 프로세스의 무결성을 보장하는 데 중요한 역할을 할 것입니다.
예를 들어,
2023년 11월, Westpac NZ는 이스라엘에 본사를 둔 사이버 보안 회사 BioCatch의 고급 생체 인식 소프트웨어를 도입하여 사기 탐지 시스템을 강화했습니다. 이 기술은 고객의 온라인 행동(타이핑 속도, 터치 스크린 압력 등)을 분석하여 비정상적인 활동을 탐지하고 사기를 방지합니다. Westpac은 9월에 BioCatch를 구현하기 시작했으며, 이달 말까지 전체 운영을 계획하고 있습니다. 이 은행은 작년에 수천만 달러 규모의 사기를 예방했다고 보고했으며, 사기가 더욱 정교해짐에 따라 신원 확인 및 인증에 더욱 집중하고 있다고 강조했습니다.
기회
- AI와 머신러닝 알고리즘을 활용해 정확도 향상
AI와 머신 러닝 알고리즘을 활용하면 사기 탐지 및 거래 모니터링의 정확도가 크게 향상됩니다. 이러한 기술을 통해 시스템은 방대한 양의 데이터를 실시간으로 분석하여 기존 방식에서는 놓칠 수 있는 복잡한 패턴과 이상을 식별할 수 있습니다. AI 알고리즘은 새로운 데이터에서 지속적으로 학습하여 탐지 기능을 적응시키고 개선하여 거짓 양성을 줄이고 사기 경고의 정확도를 향상시킵니다.
게다가 AI와 머신 러닝은 새로운 사기 추세와 정교한 계획을 인식하는 능력을 향상시킵니다. 이러한 역동적인 적응성은 모니터링 시스템이 진화하는 위협보다 앞서 나가 금융 범죄에 대한 보다 안정적이고 효과적인 보호를 제공하도록 보장합니다. 결과적으로 금융 기관은 필요에 따라 확장되는 고급 자동화 솔루션의 이점을 누리며 더 높은 수준의 보안과 운영 효율성을 달성할 수 있습니다.
예를 들어,
2023년 6월, Oscilar는 빠르게 확장되는 ACH 네트워크에서 사기 방지의 정확성을 향상하도록 설계된 AI 기반 ACH 사기 감지 솔루션을 출시했습니다. 이 솔루션은 고급 머신 러닝 알고리즘과 생성 AI를 활용하여 높은 정밀도로 사기 거래를 식별하고 방지합니다. 이는 ACH 신용 사기가 2021년에서 2023년 사이에 6% 증가하여 더 효과적인 사기 감지의 필요성을 강조함에 따라 특히 중요합니다. Oscilar의 기술은 진화하는 사기 전술에 발맞추기 위해 종종 어려움을 겪는 기존 방법의 한계를 해결하여 정교한 사기 활동에 대한 보다 강력하고 시기적절한 방어를 제공합니다.
- 핀테크 기업 및 기술 제공업체와 협력
핀테크 회사 및 기술 제공업체와 협력하면 금융 기관은 고급 기술과 혁신적인 솔루션을 활용하여 사기 탐지를 강화할 수 있습니다. 이러한 파트너십을 통해 최첨단 도구와 전문 지식을 통합하여 보다 정교한 사기 탐지 시스템을 개발할 수 있습니다. 은행과 핀테크 회사는 협력을 통해 AI, 머신 러닝 및 데이터 분석의 최신 발전을 활용하여 정확성을 높이고, 거짓 양성을 줄이며, 사기 활동으로부터 더 잘 보호할 수 있습니다.
예를 들어,
2023년 12월, Treasury Prime은 은행 및 핀테크 기업의 사기 탐지를 강화하기 위해 Effectiv와 협력했습니다. 이 협력을 통해 Treasury Prime의 네트워크는 AI를 사용하여 실시간으로 사기 거래를 식별하고 완화하는 Effectiv의 고급 거래 모니터링 솔루션을 사용할 수 있습니다. 이 협력은 금융 기관이 정교한 사기 방지 도구를 통합하여 재정적 손실과 평판 손상을 줄이는 데 도움이 됩니다. 이 움직임은 빠르게 진화하는 금융 환경에서 사기 탐지 및 위험 관리를 강화하기 위해 핀테크 기업 및 기술 제공업체와 협력하는 것의 중요성을 강조합니다.
제지/도전
- 거래량이 많을수록 탐지 복잡성이 커집니다.
대량의 거래를 관리하는 것은 사기 탐지에 상당한 과제를 안겨줍니다. 거래 수가 증가함에 따라 합법적인 거래 사이에서 사기 활동을 식별하는 복잡성도 증가합니다. 기존 방법은 뒤처지지 못하고, 미묘한 패턴을 놓치거나 거짓 양성 반응을 생성하여 비효율성과 위험 증가로 이어집니다.
게다가 엄청난 양의 데이터에는 실시간으로 정보를 처리하고 분석할 수 있는 강력한 시스템이 필요합니다. 첨단 기술이 없다면 금융 기관은 거래를 효과적으로 모니터링하기 어려워서 틈새로 빠져나갈 수 있는 정교한 사기 계획에 취약해질 수 있습니다.
예를 들어,
NVIDIA Corporation에서 발행한 기사에 따르면, 2024년 6월 American Express는 AI 기반 장단기 메모리(LSTM) 모델을 사용하여 사기 탐지를 가속화했습니다. GPU에서 병렬 컴퓨팅을 활용하여 회사는 방대한 양의 거래 데이터를 빠르게 처리하고 분석하여 실시간 사기 탐지를 가능하게 했습니다. 이 접근 방식은 American Express가 높은 거래량으로 인해 발생하는 복잡성을 처리하는 데 도움이 되었습니다. 가속화된 컴퓨팅과 AI의 통합은 이상을 신속하게 탐지하는 능력을 향상시켜 운영 효율성을 개선하고 사기로 인한 잠재적 손실을 줄였습니다.
- 높은 초기 투자 비용 및 지속적인 유지 관리 비용
높은 초기 투자 비용과 지속적인 유지 관리 비용은 고급 사기 탐지 시스템을 구현하는 데 상당한 제약이 됩니다. 이러한 재정적 부담은 소규모 기관이 최첨단 기술을 도입하지 못하게 하여 사기에 취약하게 만들 수 있습니다. 이러한 시스템의 설정과 지속적인 유지 관리와 관련된 상당한 비용은 예산에 부담을 주고 향상된 거래 모니터링 솔루션을 고려하는 기관의 의사 결정 프로세스를 복잡하게 만들 수 있습니다.
예를 들어,
여러 회사에서 상당한 초기 투자와 지속적인 유지 관리 비용을 보입니다. GLAnalytics는 연간 8,000달러의 수수료를 요구하는 반면 CertifID는 월 150달러에 거래당 10달러를 더한 금액으로 시작합니다. credolab의 모듈은 월 600달러에서 1,000달러까지 다양합니다. 이러한 높은 비용으로 인해 조직이 이러한 서비스를 채택하거나 유지하지 못할 수 있습니다.
이 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 창출처, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research에 연락하여 분석가 브리핑을 받으세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드립니다.
사기 감지 거래 모니터링 시장 범위
글로벌 사기 탐지 거래 모니터링 시장은 제공, 기능, 배포 모드, 조직 규모, 애플리케이션 및 수직에 따라 6개의 주요 세그먼트로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
헌금
- 해결책
- 서비스
- 전문적인 서비스
- 지원 및 유지 관리
- 통합 서비스
- 컨설팅 서비스
- 훈련 및 교육
- 관리 서비스
- 전문적인 서비스
기능
- KYC/고객 온보딩
- 사례 관리
- 시청 목록 스크리닝
- 대시보드 및 보고
- 기타
배포 모드
- 온프레미스
- Cloud
Organization Size
- Small & Medium Sized Organization
- Cloud
- On-Premise
- Large Size Organizations
- Cloud
- On-Premise
Application
- Payment Fraud Detection
- Money Laundering Detection
- Account Takeover Protection
- Identity Theft Prevention
- Others
Vertical
- Banking, Financial Services, and Insurance (BFSI)
- Solution
- Services
- Retail
- Solution
- Services
- IT & Telecommunication
- Solution
- Services
- Government & Defense
- Solution
- Services
- Healthcare
- Solution
- Services
- Manufacturing
- Solution
- Services
- Energy & Utilities
- Solution
- Services
- Others
- Solution
- Services
Fraud Detection Transaction Monitoring Market Regional Analysis
The market is analyzed and market size insights and trends are provided by offering, function, deployment mode, organization size, application, and vertical as referenced above.
The countries covered in the market are U.S., Canada, Mexico, Germany, U.K., France, Italy, Spain, Russia, Turkey, Netherlands, Norway, Finland, Denmark, Sweden, Poland, Switzerland, Belgium, Rest of Europe, China, Japan, India, South Korea, Australia, New Zealand, Indonesia, Thailand, Malaysia, Singapore, Philippines, Taiwan, Vietnam, Rest of Asia-Pacific, Brazil, Argentina, rest of South America, U.A.E., Saudi Arabia, South Africa, Egypt, Israel, Oman, Bahrain, Kuwait, Qatar, and rest of Middle East and Africa.
North America region dominates and the fastest growing region in the global fraud detection transaction monitoring market due to the region's advanced technological infrastructure, high adoption of digital payment systems, and significant presence of major financial institutions.
The country section of the report also provides individual market-impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts, and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, and the impact of sales channels are considered while providing forecast analysis of the country data.
Fraud Detection Transaction Monitoring Market Share
The global fraud detection transaction monitoring market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in R&D, new market initiatives, production sites and facilities, company strengths and weaknesses, product launch, product approvals, product width and breadth, application dominance, and product type lifeline curve. The above data points provided are only related to the company’s focus on the market.
Fraud Detection Transaction Monitoring Market Leaders Operating in the Market are:
- Amazon Web Services, Inc. (U.S.)
- LexisNexis (Subsidiary of Reed Elsevier) (U.S.)
- Mastercard (U.S.)
- TATA Consultancy Services Limited (India)
- Fiserv, Inc. (U.S.)
- SAS Institute Inc. (U.S.)
- ACI Worldwide (U.S.)
- Oracle (U.S.)
- NICE (Israel)
- FICO (U.S.)
- SymphonyAI (U.S.)
- UBIQUITY (U.S)
- Verafin Solutions ULC (Subsidiary of Nasdaq Inc.) (Canada)
- GB Group plc (‘GBG’) (U.K.)
- INFORM SOFTWARE (Germany)
- Quantexa (U.K.)
- Sum and Substance Ltd (U.K.)
- DataVisor, Inc. (U.S.)
- Hawk (Germany)
- Featurespace Limited (England)
- INETCO Systems Ltd. (Canada)
- Abra Innovations, Inc. (U.S.)
- Seon Technologies Ltd. (Hungary)
- Feedzai (Portugal)
- Sanction Scanner (U.K.)
Latest Developments in Fraud Detection Transaction Monitoring Market
- In June 2024, according to an article published by the NVIDIA Corporation, American Express accelerated fraud detection using AI-powered long short-term memory (LSTM) models. By leveraging parallel computing on GPUs, the company rapidly processed and analyzed vast amounts of transactional data, enabling real-time fraud detection. This approach helped American Express handle the complexities arising from their high transaction volume. The integration of accelerated computing and AI enhanced their ability to detect anomalies swiftly, improving operational efficiency and reducing potential losses due to fraud
- In July 2023, according to the blog published by BluEnt, companies faced increased challenges in fraud detection due to the high volume of transactions. Advanced technology and automated systems were adopted to analyze large datasets and spot high-risk trends and anomalies. Despite difficulties managing unstructured data where most fraud occurs, financial crime data analytics enabled the effective review of both structured and unstructured data. This approach helped in preventing fraudulent activities and integrating various data sources for improved detection
- In June 2024, ACI Worldwide and RS2 launched a comprehensive payment solution in Brazil, combining their acquiring and issuing technologies. This cloud-enabled platform allowed financial institutions and payment service providers to efficiently introduce new products and services, enhancing security and reducing costs. The integration of advanced fraud management and real-time analytics benefited the companies by expanding their market reach and increasing revenue opportunities
- In October 2023, ACI Worldwide partnered with Nymcard to enhance its fraud and anti-money laundering capabilities. This partnership allowed Nymcard to quickly and efficiently detect and prevent financial fraud using advanced machine learning and analytics. The deployment via ACI’s public cloud improved scalability, security, and operational efficiency, significantly strengthening Nymcard’s market position in MENA
- 2024년 6월, DataVisor, Inc.는 확장 가능하고 안전하며 유연한 사기 방지 및 AML 솔루션을 제공하기 위해 멀티 테넌시 기능을 강화했습니다. 이 업그레이드를 통해 조직은 사기 및 AML 전략을 사용자 지정하고 머신 러닝 모델 및 비즈니스 규칙과 같은 기능을 통해 하위 테넌트에 배포할 수 있었습니다. 이러한 강화를 통해 스폰서 은행이 규정을 준수하도록 지원했으며 대형 금융 기관이 하위 테넌시 의사 결정을 제공하는 동시에 데이터를 중앙 집중화할 수 있었습니다. 이러한 개발은 DataVisor가 시장 지위를 강화하고 은행 및 금융 기관에서 솔루션 채택을 늘려 고객 만족도와 유지율을 높이는 데 도움이 되었습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.