Global Data Science Platform Market
시장 규모 (USD 10억)
연평균 성장률 :
%

![]() |
2024 –2031 |
![]() |
USD 158.59 Billion |
![]() |
USD 1,216.19 Billion |
![]() |
|
![]() |
|
글로벌 데이터 과학 플랫폼 시장 세분화, 구성 요소 유형(플랫폼, 서비스, 지원 및 유지 관리, 컨설팅, 배포 및 통합), 기능 구분(마케팅, 영업, 물류, 재무 및 회계, 고객 지원, 비즈니스 운영 및 기타), 배포 모델(온프레미스 및 클라우드 기반), 조직 규모(중소기업(SME), 대기업), 최종 사용자 애플리케이션(은행, 금융 서비스 및 보험(BFSI), 통신 및 IT, 소매 및 전자 상거래, 의료 및 생명 과학, 제조, 에너지 및 유틸리티, 미디어 및 엔터테인먼트, 운송 및 물류, 정부 및 기타) - 산업 동향 및 2031년까지의 예측
데이터 과학 플랫폼 시장 분석
데이터 과학 플랫폼 시장은 인공지능 (AI), 머신 러닝(ML), 클라우드 컴퓨팅 과 같은 첨단 기술의 통합으로 인해 급속한 성장을 경험하고 있습니다 . 시장을 주도하는 최신 방법 중 하나는 AutoML(자동화된 머신 러닝) 도구를 사용하는 것입니다. 이는 모델 생성 프로세스를 간소화하여 전문성이 부족한 기업이 AI를 효과적으로 활용할 수 있도록 합니다. 이러한 플랫폼을 통해 데이터 과학자는 혁신에 집중할 수 있고 자동화는 반복적인 작업을 처리합니다.
Google Cloud AI 및 AWS SageMaker와 같은 클라우드 기반 데이터 과학 플랫폼은 확장성과 비용 효율성을 더욱 촉진합니다. 클라우드를 활용함으로써 기업은 엄청난 컴퓨팅 파워를 주문형으로 사용할 수 있어 방대한 데이터 세트를 빠르게 처리할 수 있습니다.
또 다른 발전은 팀이 프로젝트에서 동시에 작업할 수 있도록 하는 협업 도구의 채택으로, 효율성을 높이고 AI 솔루션의 출시 시간을 단축합니다. 이러한 플랫폼은 종종 기존 데이터 생태계와 통합되어 의료, 금융, 소매와 같은 광범위한 산업에서 사용할 수 있습니다. 조직이 데이터 기반 통찰력의 가치를 깨닫는다면, 포괄적인 데이터 과학 플랫폼에 대한 수요가 크게 증가하여 시장 성장을 촉진할 것으로 예상됩니다.
데이터 과학 플랫폼 시장 규모
글로벌 데이터 과학 플랫폼 시장 규모는 2023년에 1,585.9억 달러로 평가되었으며, 2031년까지 1,216.19억 달러에 도달할 것으로 예상되며, 2024년에서 2031년까지의 예측 기간 동안 CAGR은 29.00%입니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 페슬 분석이 포함되어 있습니다.
데이터 과학 플랫폼 시장 동향
“자동화된 머신 러닝(AutoML)의 부상”
데이터 과학 플랫폼 시장 성장을 주도하는 중요한 추세 중 하나는 자동화된 머신 러닝(AutoML)의 부상입니다. 이 기술은 모델 개발 프로세스를 간소화하고 가속화하여 데이터 과학 전문 지식이 부족한 사용자도 예측 모델을 구축할 수 있도록 합니다. 예를 들어, 2023년 1월, Science Applications International Corp.는 AI 및 머신 러닝 애플리케이션을 위한 로우코드에서 풀코드까지의 개발을 지원하는 다재다능한 솔루션인 "Tenjin" 데이터 과학 플랫폼을 출시했습니다. Dataiku로 구동되는 Tenjin은 배포에서 교육 및 자동화에 이르기까지 AI 및 ML 모델 개발의 전체 수명 주기를 촉진하며 고급 데이터 시각화 도구도 제공합니다. 이 플랫폼은 복잡한 프로세스를 간소화하여 더 광범위한 비즈니스에서 AI에 액세스할 수 있도록 하는 것을 목표로 합니다.
보고서 범위 및 데이터 과학 플랫폼 시장 세분화
속성 |
데이터 과학 플랫폼 주요 시장 통찰력 |
다루는 세그먼트 |
|
적용 국가 |
미국, 캐나다 및 멕시코(북미), 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 브라질, 아르헨티나 및 남미의 일부인 기타 남미 |
주요 시장 참여자 |
IBM(미국), DataRobot Inc.(미국), apheris AI GmbH(독일), The Digital Talent Ecosystem(미국), Databand(이스라엘), dotData(미국), Explorium Inc.(미국), Noogata(이스라엘), Tecton Inc.(미국), Spell Designs Pty Ltd(미국), Arrikto Inc.(미국), Iterative(미국), Google Inc(미국), Microsoft(미국), SAS Institute Inc.(미국), Amazon Web Services, Inc.(미국), The MathWorks, Inc.(미국), Cloudera Inc.(미국), Teradata(미국), TIBCO Software Inc.(미국), ALTERYX, INC.(미국), RapidMiner(미국), Databricks(미국), Snowflake Inc.(미국), H2O.ai(미국), Altair Inc.(미국), Anaconda Inc.(미국), SAP SE(미국), Domino Data Lab Inc.(미국) 및 Dataiku(미국) |
시장 기회 |
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석 및 유봉 분석이 포함되어 있습니다. |
데이터 과학 플랫폼 시장 정의
데이터 과학 플랫폼은 데이터 과학자가 데이터 기반 프로젝트를 개발, 관리 및 실행할 수 있는 도구, 라이브러리 및 인프라를 제공하는 통합 환경입니다. 이를 통해 사용자는 팀 간 협업을 용이하게 하는 동시에 대규모 데이터 세트를 수집, 분석 및 시각화할 수 있습니다. 이러한 플랫폼은 종종 다양한 프로그래밍 언어(예: Python, R 및 SQL), 머신 러닝 알고리즘 및 효율적인 모델 구축 및 배포를 위한 데이터 파이프라인을 지원합니다. 데이터 과학 플랫폼은 또한 버전 제어, 자동화 및 확장성과 같은 기능을 제공하여 조직이 의사 결정을 위해 구조화되고 반복 가능한 방식으로 데이터에서 통찰력을 활용하기 쉽게 합니다.
데이터 과학 플랫폼 시장 역학
운전자
- 데이터 기반 의사 결정에 대한 수요
데이터 기반 의사 결정에 대한 의존도가 높아지는 것은 데이터 과학 플랫폼 시장의 주요 원동력입니다. 산업 전반의 조직은 데이터 통찰력을 사용하여 전략을 강화하고, 고객 참여를 개선하고, 운영을 간소화하는 방향으로 전환하고 있습니다. 데이터 과학 플랫폼을 통해 기업은 방대한 데이터 세트를 효율적으로 처리하고 분석하여 보다 정확하고 정보에 입각한 의사 결정을 내릴 수 있습니다. 예를 들어, GoodData Corporation은 2023년 10월에 머신 러닝(ML), AI, 비즈니스 인텔리전스 (BI) 워크플로를 개선하도록 설계된 최신 AI 기반 데이터 분석 플랫폼을 공개했습니다. 이 플랫폼은 요약과 통찰력을 제공하는 가상 비서를 포함하여 다양한 생성 AI 기능을 통합합니다. 데이터 검색 및 개발 프로세스를 간소화함으로써 사용자는 정보에 입각한 의사 결정을 더 빠르게 내릴 수 있으며, 궁극적으로 데이터 기반 환경에서 효율성과 효과성을 개선할 수 있습니다.
- 빅데이터의 성장
IoT 기기, 소셜 미디어 플랫폼, 전자 상거래 활동 등 다양한 소스에서 생성된 데이터의 기하급수적 증가는 데이터 과학 플랫폼 시장의 주요 원동력입니다. 이러한 방대한 양의 비정형 및 정형 데이터는 효율적인 저장, 처리 및 분석을 위한 견고한 플랫폼이 필요합니다. 예를 들어, Databricks는 2024년 1월에 통신 사업자와 네트워크 서비스 제공업체(NSP)를 위해 특별히 설계된 새로운 비즈니스 인텔리전스 플랫폼을 출시했습니다. 이 혁신적인 플랫폼은 네트워크, 운영 및 고객 상호 작용에 대한 포괄적인 뷰를 제공하여 이러한 회사에 힘을 실어줍니다. 중요한 것은 데이터 프라이버시를 보장하고 기밀 지적 재산을 보호하여 통신 회사가 운영에서 높은 수준의 보안을 유지하면서 정보에 입각한 의사 결정을 내릴 수 있도록 한다는 것입니다.
기회
- 오픈소스 혁신
오픈소스 혁신은 협업과 신속한 개발을 촉진하는 접근 가능한 도구를 제공함으로써 데이터 과학 플랫폼 시장을 크게 향상시킵니다. Apache Spark 및 TensorFlow와 같은 플랫폼은 이러한 추세를 잘 보여주며, 데이터 과학자가 막대한 라이선스 비용 없이 강력한 라이브러리를 활용할 수 있도록 합니다. 조직이 머신 러닝 및 빅데이터 처리를 위한 비용 효율적인 솔루션을 모색함에 따라 이러한 오픈소스 프레임워크를 점점 더 많이 채택하면서 커뮤니티 기여와 개선이 급증하고 있습니다. 이러한 협업 환경은 새로운 기능 개발을 가속화할 뿐만 아니라 더 큰 인재 풀을 유치하여 기업이 데이터 중심 환경에서 혁신하고 경쟁 우위를 유지할 수 있는 기회를 창출합니다.
- 예측 분석의 발전
의료, 금융, 소매 부문에서 예측 분석이 급증하면서 데이터 과학 플랫폼 시장에서 상당한 기회가 생겨났습니다. 의료 분야에서 예측 모델은 IBM Watson Health와 같은 도구에서 볼 수 있듯이 환자 결과를 예측하고 치료 계획을 최적화하는 데 사용됩니다. 금융 분야에서 기업은 FICO의 고급 스코어링 알고리즘에서 볼 수 있듯이 신용 평가 및 사기 탐지를 위해 예측 분석을 활용합니다. 예를 들어, IBM Corporation은 2022년 10월에 LTO 기술을 활용한 고급 스토리지 솔루션인 Diamondback 테이프 라이브러리를 출시했습니다. 이 혁신적인 제품은 단일 서버 랙 내에서 최대 27페타바이트(PB)의 인상적인 데이터 스토리지 용량을 자랑합니다. Diamondback은 증가하는 데이터 스토리지 수요를 충족하도록 설계되어 방대한 양의 정보를 안전하고 효율적으로 관리해야 하는 조직에 확장성과 안정성을 제공합니다. 조직에서 의사 결정을 위한 예측 통찰력의 가치를 인식함에 따라 복잡한 모델링 및 예측을 처리할 수 있는 정교한 데이터 과학 플랫폼에 대한 수요가 계속 증가하여 수익성 있는 시장 전망이 창출되고 있습니다.
제약/도전
- 데이터 프라이버시 및 보안 문제
데이터 프라이버시와 보안 문제는 데이터 과학 플랫폼 시장을 크게 방해합니다. 조직이 데이터 분석에 더 많이 의존함에 따라 GDPR 및 CCPA와 같은 엄격한 규정을 준수해야 하는 압력이 커지고 있습니다. 준수하지 않으면 엄청난 벌금과 평판 손상으로 이어질 수 있으며, 조직은 데이터 처리 관행에 신중해집니다. 이러한 두려움은 회사가 혁신보다 보안을 우선시할 수 있으므로 고급 데이터 과학 솔루션의 채택을 제한합니다. 또한 강력한 보안 조치에 대한 필요성은 구현 비용과 복잡성을 증가시켜 조직이 새로운 데이터 과학 플랫폼에 투자하는 것을 더욱 억제하고 전반적인 시장 성장을 둔화시킬 수 있습니다.
- 숙련된 전문가 부족
A lack of skilled professionals significantly hinders the data science platform market. The rapid evolution of data science technologies has resulted in a substantial talent gap, with many organizations struggling to find qualified data scientists and analysts. This shortage impedes the effective utilization of advanced data science platforms, leading to underperformance in analytics initiatives. Companies often invest in sophisticated tools but cannot maximize their potential due to insufficient expertise in interpreting data and deriving actionable insights. Consequently, this talent deficit stifles innovation, slows project timelines, and ultimately limits market growth as businesses fail to leverage data science capabilities to their fullest extent.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Data Science Platform Market Scope
The market is segmented on the basis of component type, function division, deployment model, organization size and end user application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Component Type
- Platform
- Services
Professional Services
- Support and Maintenance
- Consulting
- Deployment and Integration
Managed Services
Function Division
- Marketing
- Sales
- Logistics
- Finance and Accounting
- Customer Support
- Business Operations
- Others
Deployment Model
- On-Premises
- Cloud based
Organization Size
- Small and Medium-sized Enterprises (SMEs)
- Large Enterprises
End User Application
- Banking, Financial Services, and Insurance (BFSI)
- Telecom and IT
- Retail and E-commerce
- Healthcare and Life sciences
- Manufacturing
- Energy and Utilities
- Media and Entertainment
- Transportation and Logistics
- Government
- Others
Data Science Platform Market Regional Analysis
The market is analyzed and market size insights and trends are provided by component type, function division, deployment model, organization size and end user application as referenced above.
The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America is expected to dominate the data science platform market due to the presence of a well-established infrastructure and low labor costs in the advancing countries. Moreover, the effective after-sale services offered by manufacturers within the economies are further estimated to accelerate the expansion over the forecast period.
Asia-Pacific is expected to witness significant growth during the forecast period due to rapid growth in the oil and gas exploration operation in the area within the region. China's large base for producing electronics items makes it a significant contributor to the regional market expansion.
The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Data Science Platform Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Data Science Platform Market Leaders Operating in the Market Are:
- IBM (U.S.)
- DataRobot Inc., (U.S.)
- apheris AI GmbH (Germany)
- The Digital Talent Ecosystem (U.S.)
- Databand (Israel)
- dotData (U.S.)
- Explorium Inc., (U.S.)
- Noogata (Israel)
- Tecton Inc., (U.S.)
- Spell Designs Pty Ltd (U.S.)
- Arrikto Inc., (U.S.)
- Iterative (U.S.)
- Google Inc (U.S.)
- Microsoft (U.S.)
- SAS Institute Inc., (U.S.)
- Amazon Web Services, Inc. (U.S.)
- The MathWorks, Inc. (U.S.)
- Cloudera Inc., (U.S.)
- Teradata (U.S.)
- TIBCO Software Inc. (U.S.)
- ALTERYX, INC. (U.S.)
- RapidMiner (U.S.),
- Databricks (U.S.)
- Snowflake Inc., (U.S.)
- H2O.ai(미국)
- 알테어 주식회사(미국)
- 아나콘다 주식회사(미국)
- SAP SE(미국)
- Domino Data Lab Inc.(미국)
- 다타이쿠(미국)
데이터 과학 플랫폼 시장의 최신 동향
- 2024년 6월, IBM Corporation은 최첨단 인공지능(AI), 분석 및 데이터 거버넌스 솔루션 도입을 촉진하기 위한 Telefónica Tech와의 전략적 협력을 발표했습니다. 이 파트너십은 기업의 진화하는 요구 사항을 해결하여 점점 더 복잡해지는 비즈니스 환경에서 고급 기술을 활용하여 의사 결정 개선, 운영 효율성 및 향상된 고객 경험을 제공할 수 있도록 합니다.
- 2024년 3월, Microsoft는 클라우드 AI와 가속 컴퓨팅 기술을 통해 의료 및 생명 과학 혁신을 강화하는 데 중점을 둔 NVIDIA와의 협업을 공개했습니다. 이 파트너십은 정밀 의학 및 AI 기반 진단에 대한 접근성을 가속화하여 환자 치료에 혁명을 일으키는 것을 목표로 합니다. 이 이니셔티브는 환자를 진단하고 치료하기 위한 더 빠르고 정확한 솔루션을 제공하여 궁극적으로 건강 결과를 개선함으로써 의료 산업을 크게 발전시킬 것으로 예상됩니다.
- 2023년 1월, Science Applications International Corp.는 AI 및 머신 러닝 애플리케이션을 위한 로우코드에서 풀코드까지의 개발을 지원하는 다재다능한 솔루션인 "Tenjin" 데이터 과학 플랫폼을 출시했습니다. Dataiku로 구동되는 Tenjin은 배포에서 교육 및 자동화에 이르기까지 AI 및 ML 모델 개발의 전체 라이프사이클을 용이하게 하며 고급 데이터 시각화 도구도 제공합니다. 이 플랫폼은 복잡한 프로세스를 단순화하여 더 광범위한 비즈니스에서 AI에 접근할 수 있도록 하는 것을 목표로 합니다.
- 2022년 10월, IBM Corporation은 LTO 기술을 활용한 고급 스토리지 솔루션인 Diamondback 테이프 라이브러리를 출시했습니다. 이 혁신적인 제품은 단일 서버 랙 내에서 최대 27페타바이트(PB)의 인상적인 데이터 스토리지 용량을 자랑합니다. Diamondback은 증가하는 데이터 스토리지 수요를 충족하도록 설계되어 방대한 양의 정보를 안전하고 효율적으로 관리해야 하는 조직에 확장성과 안정성을 제공합니다.
- 2022년 6월 SAS Institute는 Kamakura Corporation을 인수하여 역량을 확대하고 통합 위험 솔루션으로 포트폴리오를 강화했습니다. 이 인수는 자산 부채 관리(ALM) 및 은행을 포함한 기타 금융 부문에서 전문화된 전문 서비스를 제공하는 데 중점을 둡니다. SAS는 리소스와 전문성을 결합하여 복잡한 위험 관리 과제를 해결하는 포괄적인 솔루션을 제공하여 조직이 정보에 입각한 재무적 결정을 내리고 시장 불확실성을 효과적으로 탐색할 수 있도록 지원합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.