概要
自動運転車はモビリティの分野で最も重要なブレークスルーであり、人々の移動方法を変革しようとしています。自動運転車の導入により、人々の通勤方法が一変し、道路の安全性が向上し、交通渋滞が緩和され、二酸化炭素排出量が削減されます。近年の技術の急速な発展により、自動運転車が現実のものとなりました。この記事の目的は、自動運転車によるモビリティの変革が社会にどのような影響を与えるか、そしてシームレスでより効率的な輸送システムを実現するためにどのようなステップを踏む必要があるかを探ることです。
自動運転車の最大の焦点は安全性であり、この技術は人間が運転する車両よりもはるかに安全であることがすでに証明されています。自動運転車は、交通事故の主な原因である人為的ミスの可能性を排除するため、より安全です。さらに、自動運転車には、他の車両、歩行者、道路上の障害物を検知できるさまざまなセンサーとカメラが搭載されており、車両がそれに応じて反応できるようにします。さらに、自動運転車の導入により、飲酒運転、スピード違反、無謀運転による事故の件数が減り、誰にとっても道路がより安全になります。
自動運転車は交通渋滞を大幅に軽減します。交通渋滞の主な原因の 1 つは人為的ミスで、これが渋滞の原因となります。自動運転車は相互に通信できるため、一定の速度を維持し、衝突を回避し、道路をより効率的に使用できます。これにより、最終的には交通が高速化され、通勤者のストレスが軽減されます。
運輸部門は、世界の炭素排出の主な原因の 1 つです。自動運転車の導入により、炭素排出量は大幅に削減されます。これらの車両は、電気モーター、再生可能エネルギー、および消費エネルギー量を削減する最適化された運転パターンを使用して設計されています。電気自動車は従来のガソリン駆動車よりもはるかに効率的であり、再生可能エネルギーを使用することで排出量がさらに削減されます。
図1: 自動運転車の自動化レベルの概要
自動運転車市場は、コネクテッドカー技術とダイナミックモビリティアプリケーションの急成長により、近年大幅な成長を遂げています。さらに、安全で生産的で効率的な運転オプションと技術の完全性に対するニーズの高まりも、上記の予測期間における自動運転車市場の成長を大きく後押ししています。同様に、さまざまな車載技術とセンサーの急速な進歩は、自動運転車市場の成長を促進すると予想されるもう1つの原動力です。データブリッジマーケットリサーチの分析によると、世界の自動運転車市場は、2021年から2028年にかけて20.52%の複合年間成長率(CAGR)で成長すると予測されています。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-autonomous-vehicle-market
図2:企業は自動運転車の開発に向けて積極的に投資している
図: 自動運転車の主要プレーヤーの一部
モビリティの未来は急速に変化しており、企業はAIやMLなどの高度な技術を駆使した自動運転車やその他の交通手段の開発に多額の投資を行っています。最近のニュースでは、モビリティ分野で企業が大きな進歩を遂げており、独自の自動運転システムを開発する動きも出ています。
モビリティの世界における重要な進歩の 1 つは、初の完全自動運転車の発売です。テスラ、グーグル、フォードなどの企業は、いずれも人間の介入なしに自動運転が可能な車両を発売しています。これらの車は周囲の状況を感知し、検知した情報に基づいて判断を下すことができるため、交通やその他の障害物を安全に通過することができます。この技術は、人為的ミスによる自動車事故の数を減らす可能性が高いため、安全上の利点が高く評価されています。また、ドライバーにとっても、目的地を入力するだけで車に任せることができるため、利便性が向上する可能性があります。
例えば、
テスラは高度なセンサー、カメラ、コンピューターを使用しており、これらの車は周囲の状況を解釈し、それに応じて反応することができます。これにより、道路を簡単にナビゲートし、障害物を回避し、A地点からB地点まで安全かつ効率的に移動することができます。このテクノロジーは、運転をより安全にするだけでなく、全体的なモビリティ体験も向上させます。ディープラーニングアルゴリズムを活用することで、テスラの車両は経験から学習し、新しい状況に適応することができます。つまり、さまざまな種類の道路、交通状況、気象条件から学習できるということです。これにより、乗り心地が向上し、時間とエネルギーの使用効率が向上します。
テスラの車は経験から学ぶことができるだけでなく、V2V(車車間)通信技術によって道路上の他の車と通信することもできます。テスラの車は、交通速度に関する情報を相互に中継し、道路を最も効率的に使用するために互いに調整することができます。テスラは、2022年に車両に新しいライドシェア機能を導入することも計画しています。これにより、所有者は離れているときや運転していないときにユーザーと車両を共有できるようになります。つまり、テスラの車を所有している人は、使用していないときにそれを貸し出すことで余分なお金を稼ぐことができるということです。
こうしたイノベーションに加え、テスラは車両に新しい安全機能も導入しています。オートパイロット システムは、潜在的な危険を検出するために周囲の環境を監視するように設計されています。危険が検出されると、ドライバーに警告し、必要な措置を講じます。たとえば、歩行者や動物が車の前にいると検出された場合、オートパイロットは自動的にブレーキをかけたり、ハンドルを切ったりして事故を回避します。これらの技術の進歩により、テスラは 2022 年に自動運転車業界のリーダーになりました。最先端の技術と改善された安全機能により、人々の移動方法に革命を起こすでしょう。
自律システムの開発は、商業部門の企業にも新たな機会をもたらしました。
全体的に、自動運転車のモビリティは、生活の中でますます重要な部分になりつつあります。企業はこの分野に多額の投資を行っており、安全性、利便性、手頃な価格において大きな進歩を遂げています。自動運転車は、効率的で安全かつ誰もが利用できる輸送システムを提供することで、輸送に革命を起こす可能性を秘めています。
半自動運転車および自律走行車市場は近年、大幅な成長を遂げています。半自動運転車および自律走行車には、エンジンの生産性、燃費の向上、車両事故の最小化など、多くの機能があります。これらは、これらの車両の需要を高め、市場の成長を促進すると予想される潜在的な利点です。さらに、半自動運転車および自律走行車は、アップデート、コネクテッドカー、リアルタイム交通改善運転支援システムを提供するため、車両の効率を大幅に向上させることができます。半自動運転車および自律走行車は、それに応じてルートを変更するのに役立つスマートドライビングを楽しむ機能も提供します。これらは、市場の成長に多大な機会を生み出すと予想される主要な要因の一部です。データブリッジマーケットリサーチの分析によると、世界の半自動運転車および自律走行車市場は、2023年から2030年にかけて3.80%の複合年間成長率(CAGR)で成長すると予測されています。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-autonomous-vehicle-market
地域分析
北米では、いくつかの都市が自律走行車を積極的に交通システムに取り入れています。たとえば、Alphabet Inc.の子会社であるWaymoは、フェニックス都市圏で自律走行車による公共の配車サービスを開始しました。この取り組みは、交通の課題に対処し、住民に便利な移動手段を提供することを目指しています。欧州諸国は自律走行車の導入で大きな進歩を遂げています。たとえば、英国政府は自動運転技術の研究開発に多額の投資を行っています。アジアでは、特に中国が自律走行車分野の主要プレーヤーの1つとして浮上しています。BaiduやDidiなどの中国のテクノロジー企業は、自律移動ソリューションの開発に多額の投資を行っています。たとえば、Baiduはオープンソースの自律運転プラットフォームであるApolloを立ち上げ、いくつかの自動車メーカーと協力して公道で自律走行車技術をテストしています。
図3: 2035年までの米国市場におけるシェアード自動運転モビリティの総数(%)
出典: 国際運輸フォーラム、連邦交通局 (FTA)、DBMR 分析
図4: 2035年までの中国市場におけるシェアード自動運転モビリティの総数(%)
出典: 国際運輸フォーラム、連邦交通局 (FTA)、DBMR 分析
図5: 2035年までの欧州市場におけるシェアード自動運転モビリティの総数(%)
出典: 国際運輸フォーラム、連邦交通局 (FTA)、DBMR 分析
全体的に、これらの地域的な傾向は、モビリティの向上、渋滞の緩和、輸送効率の向上を実現するソリューションとして、自動運転車への関心が高まっていることを示しています。技術の継続的な進歩と政府の支援政策により、自動運転車市場は今後数年間で大幅な成長が見込まれます。
図6: 投資分析における地域差
出典: 国際運輸フォーラム、連邦交通局 (FTA)、DBMR 分析
投資総額の3分の1以上が、米国などのモビリティに重点を置く企業に投資され、続いて中国(506億ドル)、英国(341億ドル)、イスラエル(185億ドル、うち174億ドルはMobileyeへの投資)となっている。英国を除く欧州連合(EU)は、世界の資金のわずか5%しか受け取っていないが、特定されたすべての企業の19%を占めている。上位の投資家は米国、日本、中国で、最大の投資家はドイツだが、欧州連合に約40億ドルしか貢献していない。
近年、世界のシェアードモビリティ市場は、顧客の間でエレガントで費用対効果の高い交通手段が広く採用されたことにより、大幅な成長を遂げています。したがって、消費者の間でライドシェアリングがますます人気を集めていることが、市場の成長を後押しする可能性があります。これに加えて、世界中の発展途上国でインターネットが普及しているため、配車サービスモデルの需要が高まっています。顧客満足度を確保するための新しいタイプのサービスの導入の増加も、市場の成長の大きな要因となることが予想されます。データブリッジ市場調査の分析によると、世界の自動運転車市場は、2023年から2030年にかけて31.18%の複合年間成長率(CAGR)で成長すると予測されています。
この研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-shared-mobility-market
大手自動車メーカーは、自律走行車へのモビリティの実装の最前線に立っています。レポートの完全版では、データブリッジマーケットリサーチが市場規模を価値(百万米ドル)と数量(百万台)の観点から提供します。自律走行車市場に関するこのレポートは、最近の開発、貿易法、生産分析、バリューチェーンの最適化、企業の市場シェア、国内および地域の市場参加者の影響について詳細に説明します。また、新しい収益源の機会、規制の変更、戦略的な市場成長分析、市場規模(価値(百万米ドル)と数量(百万台)、市場の拡大、アプリケーションのニッチと優位性、製品の承認、製品の発売、地理的傾向)についても調査します。自律走行車市場の詳細については、アナリストブリーフについてデータブリッジマーケットリサーチにお問い合わせください。DBMRは、市場を成長させるための情報に基づいた選択を行うお手伝いをします。
研究の詳細については、以下をご覧ください。https://www.databridgemarketresearch.com/jp/reports/global-autonomous-vehicle-market
自動運転車におけるモビリティ変革の技術動向
自動運転車のモビリティを変革する技術トレンドの一部。自動運転車は急速に進化しており、最新の技術トレンドによって推進されています。人工知能(AI)から5G、ブロックチェーンまで、これらの新しい技術は、人々の移動や車両とのやり取り、輸送手段としての車両の使用方法に革命をもたらしています。
上記の 4 つの主要な技術トレンドは、自動運転車技術の急速な進歩を推進し、今日の世界中の人々の移動方法を変革しています。これらの技術がさらに進歩するにつれて、すべてのユーザーの交通の安全性、効率性、利便性が継続的に向上します。AI、5G、ブロックチェーン、クラウド コンピューティングを搭載した自動運転車は、今後数年間で世界中の人々の移動方法に革命をもたらすでしょう。
無人運転車向け完全自律システム設計における課題
道路上の機会は無限であり、そのすべてに備えることは人間には不可能です。この場合、状況に備えるためにアルゴリズムをトレーニングすることは技術的に不可能です。特定の状況で物体や生命が破壊されないように、さまざまな道路状況に反応する方法をシステムをトレーニングすることは、最も困難な作業の 1 つです。自動運転車は、コーナリング、高速道路での突然の車両混雑、珍しい野生動物や動物の横断、道路を横断しようとしている困った歩行者、道路のくぼみや道路状況の悪さ、通行止め、道路工事中など、さまざまな状況を認識して反応できなければなりません。最大の課題の 1 つは、車両が道路状況を認識して適切な判断を下すのに数秒しかないことです。
道路状況以外にも、自動運転車は環境状況を認識し、それに応じて運転の判断や戦略を調整する必要があります。たとえば、自動運転車は自動的に降雨量を検知し、摩擦による事故を避けるために低速での運転を制限する必要があります。車両も同様の天候の変化を認識し、スムーズな走行を確保するためにタイムリーな判断を下す必要があります。もう 1 つは、車が外気温を判断してエアコンの温度を自動的に調整するケースです。
スムーズで途切れない運転のために、自動運転車は前述のように、さまざまな要因に関する最新情報を常に把握していなければなりません。1 つでも更新情報がシステムに届かないと、車両全体の判断能力に影響を及ぼし、不要な結果をもたらします。たとえば、ナビゲーション システムが今後の道路閉鎖に関する情報を受信しない場合、車両は道路が空いていると想定して、そこに向かって加速し続ける可能性があります。衝突を引き起こし、人身傷害や物的損害が発生する可能性があります。車両が横断する歩行者や曲がる車両に関する最新情報を受信しない場合にも、同様の状況が発生する可能性があります。
自動運転車は、あらゆる交通状況の中で運転しなければならない道路に出る必要がある。交通は厳しく抑制され、自己規制される可能性がある。しかし、人々が交通規則を破るケースはしばしばある。物体が予期せぬ状況で現れるかもしれない。交通がなくなるまで、そして何らかの前提条件を満たして自動的に動き出すまで、延々と待つことはできない。交通がなくなるのを待つような車が増えれば、最終的には交通渋滞につながる可能性がある。
ドライバーが時間通りに行動する必要がある重要なことの 1 つである安全性は、自動運転車の運転における大きな課題です。試運転された自動運転車のすべてが完全な自動運転ではありません。手動介入モジュールが搭載されています。自動運転車に対する信頼は依然として比較的低く、ドライバーの 70% が自動運転車に手動ブレーキが搭載されることを望んでいます。自動運転車は相互依存するガジェットやデバイスのネットワークで構成されており、各モジュールがそれぞれの役割を果たすという全体的な信念があるため、これは重要です。
自動運転車の最も重要な側面は事故責任です。自動運転車の場合、ソフトウェアが車を運転し、すべての重要な決定を下す主要コンポーネントになります。初期の設計では、ハンドルの後ろに人が物理的に配置されていましたが、Google が紹介した新しい設計にはダッシュボードとハンドルがありません。
このような設計では、車にはハンドル、ブレーキペダル、アクセルペダルなどのコントロールがないため、不幸な事故が発生した場合、車内の人はどのように車をコントロールすればよいのでしょうか。さらに、自動運転車の性質上、乗員はほとんどの場合リラックスした状態にあり、交通状況に細心の注意を払っていない可能性があります。注意が必要な状況では、行動を起こす必要があるときには、状況を回避するには遅すぎる可能性があります。
自動運転車に乗る体験は、従来の車を運転するのと同じくらいシームレスでなければなりません。つまり、自動運転車は、ドライバーと乗客にとってシームレスであり続けるために、バックエンドでデータの生成と処理の複雑さをすべて維持する必要があります。行動を起こすために追加の適切なデータが必要になるたびに車両を減速することは、道路上では命を脅かすことになります。自動運転車は、信頼できるドライバーがペダルを踏んでいるように感じる必要があります。
自動運転車は、ナビゲーションにレーザーとレーダーを使用します。レーザーは屋根の上に設置され、センサーは車体に取り付けられています。レーダーの原理は、周囲の物体からの電波の反射を検出することで機能します。道路上では、車は継続的に無線周波数の波を放射し、それが周囲の車や道路近くの他の物体から反射されます。反射にかかる時間を測定して、車と物体間の距離を計算します。次に、レーダーの読み取り値に基づいて適切なアクションが実行されます。レーダーの原理は、周囲の物体からの電波の反射を検出することで機能します。道路上では、車は継続的に無線周波数の波を放射し、それが周囲の車や道路近くの他の物体から反射されます。反射にかかる時間を測定して、車と物体間の距離を計算します。次に、レーダーの読み取り値に基づいて適切なアクションが実行されます。このテクノロジーが道路上の何百もの車両に使用されると、車は自分の(反射)信号と他の車両からの(反射または送信)信号を区別できるでしょうか?たとえレーダーに複数の無線周波数が利用可能であったとしても、この周波数範囲は製造されるすべての車両にとって不十分になることはまずありません。
これはおそらく、この分野で最大の課題です。自動運転車は毎秒膨大な量のデータを生成し、処理します。多くのセンサーとデバイスが広範囲に動作して、環境からデータを検出し、生成します。これには、LIDAR、RADAR、SONAR、GPS、コンピューター ビジョンが含まれます。自動運転車は、8 時間走行すると最大 100 (TB) テラバイトのデータを生成する可能性があります。その結果、大量のクラウド ストレージ、転送、および処理能力が常にほぼ 100% の可用性で必要になります。車両が意味のある動作をするには、これらすべての機能が最高レベルでなければなりません。
V2X 接続とは、車が周囲や他の車と接続できることを意味します。V2X テクノロジは、周囲の物体や要素を検出できるようにすることで自動運転車に大きく貢献し、運転中のリスクを軽減します。V2X はテレマティクスと連携してデータをより効率的に処理することもできます。さらに、さまざまな動作モードを切り替えて、適切な情報を継続的に送受信します。V2X 接続には、業界標準の暗号化プロトコルを使用して、生成されるすべてのデータと組み込みシステムを保護するという優れた機能があります。
ADAS 制御は、正確な情報を使用して自動運転車が最適な運転選択を行うのに役立ちます。つまり、交通量の少ない最適なルートを見つけたり、狭いスペースに簡単に駐車したり、遠くから歩いている人や信号に気づいたり、天気がどうなるかを把握したり、その他のことが可能になります。
簡単に言えば、データ レイヤー コンポーネントは、クラウドなどの永続ストレージに保存されているデータへのアクセスを可能にするアプリケーションの一部です。これにより、モジュールは処理に共通して必要なデータをすぐに使用できるようになります。つまり、不要な重複情報の作成が削減されます。
ADAS テストにより、車両は道路上で運転を開始する前に運転決定を保存できます。これは、これらのアルゴリズムがさまざまな条件で何度もテストされ、学習して調整するためです。ADAS モジュールは、物事を検出するために適切かつ正確に機能する準備ができています。道路での使用を開始した後も、改善され続けます。
結論と将来
自動運転車によるモビリティの変革は、輸送システムに大きな変化をもたらす可能性があります。自動運転車は交通渋滞を減らし、道路の安全性を高め、二酸化炭素排出量を削減し、輸送をより効率的で費用対効果が高く、環境に優しいものにします。ただし、この変革には、必要なインフラストラクチャの構築、通信プロトコルの開発、規制フレームワークの確立を確実にして、自動運転車のシームレスな統合を可能にするために、自動車メーカー、テクノロジー企業、政策立案者、規制当局による協調的な取り組みが必要です。輸送の未来は自動運転にあり、今こそこのテクノロジーとその利点を受け入れる時です。
DBMRは、世界的にフォーチュン500企業の40%以上にサービスを提供しており、5000社を超えるクライアントのネットワークを持っています。当社のチームは、お客様のご質問に喜んでお答えします。 https://www.databridgemarketresearch.com/jp/contact
お問い合わせサイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護
サイバーセキュリティ: オンラインでのユーザーデータの保護