概要

音声、テキスト、コード、動画、写真、その他のデータなどのコンテンツを作成できる人工知能は、生成 AI と呼ばれます。生成 AI は、トレーニング データ セット内のパターンを見つけて予測を行うために使用される標準的な AI アルゴリズムとは対照的に、機械学習アルゴリズムを使用してトレーニング データ セットに基づいて出力を生成します。生成 AI の出力は、プロンプトと同じメディア (テキストからテキスト) または別のメディア (テキストから画像、または画像から動画) にすることができます。生成 AI アプリケーションの ChatGPT、Bard、DALL-E、Midjourney、DeepMind は、よく知られている例です。具体的には、生成 AI モデルに大量の既存コンテンツを与えて、新しいコンテンツを作成するようにモデルをトレーニングします。確率分布に基づいてデータ セット内の根本的なパターンを識別することを学習し、プロンプトが与えられると、同様のパターン (またはこれらのパターンに基づく出力) を作成します。

The Role of Generative AI in Transforming Business

例えば、

さらに、ディープラーニングまたは生成 AI と呼ばれる機械学習の包括的なカテゴリの一部では、従来の機械学習よりも複雑なパターンを処理できるニューラル ネットワークが使用されます。人間の脳にヒントを得たニューラル ネットワークは、トレーニング データの違いやパターンを区別するために必ずしも人間の監視や介入を必要としません。

データブリッジ市場調査によると、人工知能市場は2021年から2028年の予測期間にCAGR 26.1%の市場成長を遂げると予想されています。データブリッジ市場調査のレポートは、市場に関する広範な分析とより深い洞察を提供し、予測期間中にその成長に顕著な影響を与えると予想される要因を強調しています。調査の詳細については、以下のリンクをご覧ください。

https://www.databridgemarketresearch.com/jp/reports/global-artificial-intelligence-market

生成AIとは何ですか?

生成 AI とは、プロンプトに応じて生データから統計的に確率の高い出力を生成できるディープラーニング モデルを指します。生成モデルは長年、統計学で数値データを分析するために使用されてきました。しかし、ディープラーニングの台頭により、画像、音声、その他の複雑なデータ タイプに拡張できるようになりました。このクロスオーバーの偉業を達成した最初のクラスのモデルには、2013 年に導入されたバリエーション オート エンコーダー (VAE) があります。VAE は、リアルな画像や音声を生成するために広く使用された最初のディープラーニング モデルでした。

生成 AI は、既存のアーティファクトから学習して、トレーニング データの特性を反映した新しい現実的なアーティファクトを生成できます。画像、ビデオ、音楽、音声、テキスト、ソフトウェア コード、製品デザインなど、さまざまな斬新なコンテンツを作成できます。生成 AI は、進化し続けるいくつかの技術を使用します。最も重要なのは AI 基盤モデルです。これは、さまざまなタスクに使用できるラベルのない広範なデータセットでトレーニングされ、さらに微調整が行われます。これらのトレーニング済みモデルを作成するには複雑な数学と膨大な計算能力が必要ですが、本質的には予測アルゴリズムです。

AI モデルの種類:

モデル

タイプ

画像生成

画像から画像への変換、スケッチからリアルな画像への変換、テキストから画像への変換、テキストから音声への変換

オーディオの生成

サウンドトラック編集、オートチューン

合成データ生成

疑似画像とディープフェイク

ビデオ生成

 

出典: Altexsoft

ジェネレーティブAIの旅

生成 AI のリスクは大きく、急速に変化します。 ChatGPT および同様のプログラムは、一般に公開されている大量のデータを使用してトレーニングされます。プラットフォームは一般データ保護規則 (GDPR) やその他の著作権法に準拠することを目的としていないため、企業がプラットフォームをどのように使用するかに細心の注意を払うことが重要です。

経営者が採用する主要戦略

ジェネレーティブ AI はビジネスの世界にも浸透しており、2022 年のグローバル AI 採用指数によると、注目すべきことに 35% の企業がこれを採用しています。ChatGPT などのジェネレーティブ AI ツールは、膨大な量のデータを分析して、従来の方法ではすぐには提供できない独自の洞察を生み出します。ビジネス向けのジェネレーティブ AI は、コンテンツ作成の自動化からサプライ チェーンの最適化、顧客サービスの向上まで、広範囲に影響を及ぼします。ジェネレーティブ AI ツールは、機械学習と自然言語処理を組み合わせることで、企業が十分な情報に基づいた意思決定を行い、業務を最適化し、利益を増大できるようにします。

生成人工知能と拡張現実は、人間の経験を複製したり置き換えたりするのではなく、強化、拡張、拡張することで、差し迫った社会的課題やビジネス上の問題に対処するのに役立つ強力なツールです。生成 AI は、テキスト、音声、画像、音楽、ビデオ、特にコードを「生成」できます。その機能に、いつ、何を、どのように対話するかを調整するために使用される、誰か自身の情報のフィードが結合されると、誰かが物事を成し遂げるのが容易になり、ソフトウェアのアクセシビリティが大幅に向上します。

ジェネレーティブ AI は、斬新なソリューションを生み出し、手順を自動化し、意思決定能力を向上させる能力を備え、幅広い分野の産業を変革し、ビジネスを急速に再編しています。これは、独自のテキスト、グラフィック、その他の種類の資料を作成できる人工知能のサブセットです。調査結果によると、ジェネレーティブ AI は、さまざまな方法で企業に適用できる強力なツールです。今後数年間、テクノロジーの進歩に伴い、ジェネレーティブ AI は組織にさらに大きな影響を与える可能性があります。

生成AIの応用

人工知能 (AI) の出現は、企業が日常のワークフローを運営および管理する方法に大きな影響を与えています。多様な AI アプリケーションとツールの出現により、企業はより賢明な決定を下し、反復的なタスクを自動化して、業務をより効率的かつ効果的に行うことができます。電子メールやワードプロセッサなどのプロフェッショナルな生産性アプリケーションは、生成 AI 機能の最新の開発により、自動化によって強化され、効率と精度が向上します。Microsoft が Teams のプレミアム エディションに GPT-3.5 を実装したことは、生成 AI の有効性を示す注目すべき例です。セクション、タイトル、カスタマイズされたマーカーを自動的に作成することで、この効果的なツールは会議の記録を改善します。言及さえも強調表示できるため、会話の最も重要な部分を簡単に見つけることができます。

高品質のコンテンツを作成することは、製品説明、販促資料、さらには記事全体の作成であっても、企業の世界で最も困難で時間のかかる作業の 1 つです。このような場合、企業はビジネスで生成 AI テクノロジーを活用し、限られた時間内で許容できる品質のコンテンツを生成できます。自然言語処理と機械学習アルゴリズムを利用することで、生成 AI ツールは既存のコンテンツを評価し、特定の基準を満たす新しい高品質のコンテンツを作成できます。これには、トーン、スタイル、さらには対象となる聴衆などの考慮事項が含まれる場合があります。

カスタマー サービスは、ChatGPT のような生成 AI ツールが困難なビジネス上の問題に対処できる重要な分野です。ChatGPT を搭載したチャットボットは、顧客の問い合わせに対して迅速かつ正確な回答を提供し、全体的な顧客体験を向上させます。また、顧客の購入履歴や好みに基づいてカスタマイズされた提案を行うこともできます。

例えば、

企業の法務業務の支援は、生成型 AI ビジネス アプリケーションの中で最も重要な 1 つです。企業は、法務部門で生成 AI ツールを利用することで大きなメリットを得ることができます。生成 AI は、法的調査を実行し、判例を精査し、法的文書を作成する能力により、法務チームがより有能かつ熟練的に業務を遂行できる可能性を秘めています。

例えば、

ChatGPT などの人工知能ツールは、企業の人事業務に重要なサポートを提供する可能性があります。 ChatGPT は、自然言語処理と機械学習技術を通じて、スタッフの問い合わせに正確かつ迅速に回答しながら、反復的な人事業務を機械化できます。

たとえば、企業はビジネス向けの生成 AI の力を活用して、仮想 HR アシスタントを考案できます。この仮想アシスタントは、休暇の管理、福利厚生の管理、組織への新入社員の紹介などのタスクで従業員を支援できます。さらに、チャットボットは従業員のスキルと興味に基づいてカスタマイズされたキャリア開発の推奨事項を提供できるため、従業員の参加と定着率が向上します。さらに、生成 AI は、オンライン入社試験での不正行為防止対策の導入にも利用できます。

ビジネスにおける生成 AI テクノロジーは、人間の認識を逃れる可能性のある隠れたパターンや傾向を明らかにすることで、データ分析に大きな利点をもたらします。このような洞察を明らかにする AI の能力は、企業に新たな成長分野を特定し、業務を最適化し、顧客の満足度を高める機会をもたらします。

ジェネレーティブ AI の感情分析機能は、データ分析の優れたユースケースとして役立ちます。ChatGPT などのツールは、ソーシャル メディア データを分析して、ブランド、製品、またはサービスに対する顧客の傾向を特定できます。企業は、この情報を使用して、ビジネスにおけるジェネレーティブ AI の利点を活用できます。このデータの助けを借りて、マーケティング戦略を洗練し、顧客を深く理解し、顧客満足度を高めることができます。さらに、ジェネレーティブ AI ツールは、膨大な量のデータを分析し、潜在的なリスクを検出する可能性があります。このような分析的洞察により、ジェネレーティブ AI を使用する企業は、潜在的な問題が拡大する前に積極的に特定して対処することができます。ビジネスにおけるジェネレーティブ AI テクノロジーは、顧客のフィードバックと行動を分析することで、顧客離れのリスクが高いことを示すパターンを特定できます。この機能により、企業はそのようなパターンに積極的に対処し、パーソナライズされたオファーやインセンティブを通じて顧客を維持できます。

多くの組織がビジネス、特に売上の向上のために生成 AI を使用しています。生成人工知能 (AI) は、売上を増やして競争力を維持する手段として、ビジネス界で重要性を増しています。このテクノロジーの具体的な応用例の 1 つは、生成言語モデルを使用して、顧客の個々のニーズと好みに応えるパーソナライズされた製品の説明を作成することです。生成 AI は、顧客データと行動を分析することで、ユニークで説得力のある説明を生成することができます。価格の最適化は、ビジネスで生成 AI テクノロジーを活用するもう 1 つの方法です。生成モデルは、市場動向、顧客行動、競合他社の価格を分析することで、製品やサービスの最適な価格を生成できます。これにより、企業は収益を最大化しながら、顧客に価値を提供できます。

さらに、生成 AI は、顧客のセグメンテーションやターゲットを絞ったマーケティング キャンペーンの支援を必要とする企業でもビジネスに活用できます。生成モデルは顧客データを精査することでパターンを検出し、特定の顧客セグメントにアピールするターゲットを絞ったキャンペーンを作成できます。

新製品開発も、ビジネスにおける生成 AI の優れた用途です。革新的な製品の開発と設計プロセスの迅速化は、多くの企業にとって複雑なビジネス上の困難となる可能性があります。それにもかかわらず、これらの障害に対処するための創造的な方法論があり、その 1 つは人工知能を活用したメカニズムの利用によるものです。

AI を活用することで、企業は大量のデータを迅速に精査し、特定のパラメーターに基づいて最適化された設計を作成できます。これにより、品質とパフォーマンスを確保しながら、製品開発の期間と費用を大幅に削減できます。

例えば、

ビジネス部門における不正行為検出という複雑な問題に取り組むために、企業は AI を活用したツールを採用する可能性があります。これらのツールには、さまざまな種類の不正行為を積極的に検出して阻止する機能があります。生成 AI をビジネスに使用する利点の 1 つは、偽造 ID 文書の識別の分野です。これらのツールは、パスポートや運転免許証などの身分証明書を迅速にスキャンして認証し、不正行為を防ぎます。

さらに、企業は AI を活用したツールを利用して、支払い詐欺を特定できます。これらのツールは、支払いデータを精査し、疑わしい取引やパターンを認識し、企業が適切な措置を講じて不正行為を防止できるようにします。

AI を活用した不正検出ツールが役立つもう 1 つの分野は、偽アカウントの検証です。これらのツールは、ユーザーの行動とデータを精査して偽のアカウントを特定し、プラットフォームへのアクセスや不正な取引の開始を阻止します。

生成AIが直面する課題

生成型人工知能 (AI) は広く普及していますが、企業によるその導入にはある程度の倫理的リスクが伴います。生成 AI が主流になりつつある今、企業にはこのテクノロジーを倫理的に使用し、潜在的な危害を軽減する責任があります。以下は、組織が生成 AI をビジネスに使用する際に直面する可能性のあるいくつかの課題です。

結論

ChatGPT などのテキストを生成するチャットボットが多くの注目を集めていますが、生成 AI はグラフィックス、ビデオ、オーディオ、コンピューター コードなどの他の種類のマテリアルも生成する可能性があります。さらに、組織向けに分類、変更、要約、問い合わせへの対応、および新しい資料の作成を行う機能もあります。ビジネス機能やワークフロー全体でアクティビティ レベルで作業の実行方法を変更することで、これらのアクションのそれぞれが価値を提供する可能性があります。テクノロジーが進化し成熟するにつれて、この種の生成 AI は企業のワークフローにますます統合され、タスクを自動化し、特定のアクションを直接実行することができます。ただし、不完全なトレーニング データやモデルを開発するエンジニアによる決定により、モデルがアルゴリズムのバイアスを生成する可能性があるため、生成 AI はさまざまなリスクを引き起こす可能性があります。さらに、モデルは同じプロンプトに対して異なる回答を生成する可能性があり、出力の精度と信頼性を評価するユーザーの能力を妨げます。


DBMR は、世界中のフォーチュン 500 企業の 40% 以上にサービスを提供しており、5,000 を超える顧客のネットワークを持っています。私たちのチームが喜んでご質問にお答えいたします。訪問、 https://www.databridgemarketresearch.com/jp/contact

お問い合わせ

もっと詳しく知る

影響とアクションに関する追加の洞察