概要

近年、自動運転(ロボタクシーとも呼ばれる)は、自動車業界のトレンドの 1 つとなっています。自動車、輸送、およびより広範なモビリティ市場は、社会的、技術的、経済的な変革を経験しており、人や製品の移動方法が根本的に変化しています。人口増加、都市化、環境への懸念が続く中、明日の人口拠点と経済活動をサポートするには、新しい形態のモビリティが不可欠です。

2022年から2029年の予測期間によると、自動運転高級車市場は36.16%の大幅な成長を遂げると予想されています。 Data Bridge Market Researchのレポートは、市場に関する包括的な分析と洞察を提供し、この期間の成長に顕著な影響を与えると予想される要因を強調しています。

ソフトウェア企業を率いるテクノロジー大手や、新しいモビリティのスタートアップ企業も、まったく新しい未来のモビリティ時代の恩恵を受けようとしています。今日、自動車はさまざまな機能を提供するプラットフォームになりつつあります。そのため、自動運転車は従来の自動車に比べて、はるかにソフトウェア主導の製品になりつつあります。自動運転車とは、周囲の環境を感知し、人間の介入なしに運転できる車のことです。センサー技術、LiDAR、4Dレーダー画像などの進歩により、完全自動運転車への道が開かれています。これらの技術は、車両がタイムリーな判断を下せるように、特定のデータをリアルタイムで収集するために使用されています。

人間の乗客はいつでも車両を制御する必要はなく、また人間の乗客がその場にいる必要もありません。従来のメーカーとサプライヤーは、開発サイクルを継続的に短縮し、避けられない新しいソフトウェア時代への移行に追いつくために、非常に熱心に取り組んでいます。しかし、ソフトウェア業界で主に知られている協調的なアジャイル作業モデルと、より革新的な協力管理アプローチにより、これらの課題に取り組み、チャンスに変える道が開かれます。

自動運転車とは何ですか?

The Digital Transformation of Mobility: Self-Driven Cars

ディープラーニングは、自動運転車の自動化部分の中核をなすものです。AV は、さまざまなトレーニング モデルとリアルタイムのデータ取得に基づいて計算上の決定を下すことができます。最近のディープラーニングと人工知能の発展により、自動運転車はリスクの高い状況に対応し、気象条件による障害物追跡の問題に対処できるようになりました。自動運転車または無人運転車は、センサー、カメラ、レーダー、人工知能 (AI) を組み合わせて、人間のオペレーターなしで目的地間を移動する車両です。自動運転車を開発および/またはテストしている企業には、Audi、BMW、Ford、Google、General Motors、Tesla、Volkswagen、Volvo などがあります。

世界規模の自動運転車市場シナリオ

自動運転車は、世界中の消費者の移動体験に革命をもたらしています。技術の進歩により、自動運転車は人間が運転する車よりも安全になります。米国では、疲労、人為的ミス、飲酒運転などが原因で、毎年 30,000 人の命が自動車事故で失われています。

現在、ほとんどの車には基本的な ADAS (先進運転支援システム) 機能が搭載されており、これらの動作がなくても機能し、数千人の命を救う可能性があります。ほとんどの自動運転車には、交通の突然の停止など、車が危険に近づいていることを検知するように設計された自動緊急ブレーキ システムが搭載されています。さらに、自動緊急ブレーキ システムは、道路上の歩行者、自転車、またはその他の車両を検出して応答するように構成できます。最初の自動運転車は 2018 年に Waymo から発売され、何十億もの人々に安全、クリーン、便利なモビリティを提供しました。 Waymo の 600 台の自動運転車は、どの競合他社よりも多くの距離を自動運転で走行しています。実際、2018 年 10 月には、マウンテン ビュー (カリフォルニア州)、オースティン (テキサス州)、カークランド (ワシントン州)、フェニックス (アリゾナ州) の街路が中心でしたが、2018 年 10 月にフリートは 25 都市の公道で 1,000 万マイル以上を走行しました。 。 2018年8月、配車会社Lyftは、顧客が同社のモバイルアプリを使用してラスベガスで5,000回以上の自動運転の料金を支払ったと発表した。このサービスは1月にラスベガスで30台のBMW車で開始されたが、当時同社の保有車両は75台だった。

自動車メーカーが採用する主要戦略

自動運転車の自動化レベル

自動車技術者協会 (SAE) は、0 (完全手動) から 5 (完全自動運転) までの 6 つの運転自動化レベルを定義しており、米国運輸省もこれを採用しています。

レベル0(運転自動化なし)

自動化機能が装備されておらず、ドライバーが車両を完全に制御する車両

レベル 1 (運転支援)

クルーズコントロールなどの主要な自動化機能を1つ以上装備しているが、その他のすべてのタスクはドライバーが実行する必要がある車両

レベル2(部分的な運転自動化)

アダプティブクルーズコントロールなど、2つ以上の主要機能を備えた車両。車両はステアリングと加速/減速の両方を制御できます。ここでは、人間が運転席に座っていつでも車を制御できるため、自動化は自動運転には至りません。テスラのオートパイロットとキャデラック(ゼネラルモーターズ)のスーパークルーズシステムは、どちらもレベル2に該当します。

レベル3(条件付き運転自動化)

交通状況や環境状況に応じて、運転者が車両の重要な安全機能を放棄できる機能を備えた車両。移行期間後は、自動化機能の制約を考慮して、運転者が車両の制御を引き継ぐことが期待されます。

レベル4(高度な運転自動化)

レベル 4 の車両は自動運転モードで動作できます。レベル 3 とレベル 4 の自動化の主な違いは、問題が発生した場合やシステム障害が発生した場合にレベル 4 の車両が介入できることです。

例えば、

  • フランスの企業NAVYAはすでに米国で、完全に電気で走行し最高時速55マイルに達するレベル4のシャトルとタクシーを製造し販売している。
  • 2019年11月、ボルボと百度は、中国のロボタクシー市場向けのレベル4電気自動車を共同開発するための戦略的提携を発表した。

レベル 5 (完全な運転自動化)

ドライバーの有無にかかわらず、道路状況を監視し、旅行全体を通じて安全に重要なタスクを実行する完全自律型車両。

出典: SEA

自動運転車または自動運転車の主要テクノロジー

自動運転車には、自動制御、アーキテクチャ、人工知能、コンピュータービジョンなど、さまざまな技術が統合されており、高度に発達したコンピューターサイエンス、パターン認識、インテリジェント制御技術の成果です。

自動運転車が直面する課題

レベル 5 の自動運転車が直面する主なハードルは、真のレベル 5 の自動運転車を作成できるほど技術が進んでいないことです。ゼネラルモーターズのクルーズテスト車両とNuro車は、レベル5車開発の最初のステップにすぎません。無人運転車に対する国民の不信感も、レベル5の自動運転車が克服しなければならない障害だ。現在のレベル 3 の車は事故を起こしており、レベル 5 の車は完全に自動運転であるため、安全性について真の懸念が生じています。これらとは別に、無人運転車用の完全自律システムを設計する際には、依然として多くの課題に直面しています。

自動運転車は、交通警官が赤信号で車両に手を振るなど、異常な状況を解釈するのに苦労します。すべてのシナリオを事前にコーディングすることは不可能であるため、単純なルールベースのプログラミングは常に機能するとは限りません。したがって、自動運転車には制御関連の問題が多数あり、運転中に同時に管理および調整する必要がある多くの可動要素があるため、道路上の「無人または自律」車両のアイデアは、生活のあらゆる分野の人々の興味をそそっています。

自動運転車導入準備が進んでいる国トップ

運転支援技術や自動運転システムなど、自動車技術の継続的な進化は、さらなる安全上のメリットの実現を目指しています。世界中で自動運転車が普及し、その開発は驚異的なスピードで進んでいます。オランダは、優れた道路インフラ、強力な支援体制、電気自動車の積極的な導入により、自動運転車準備指数で新たなリーダーとして注目されていますが、シンガポールは、道路交通法の改正により自動運転車の公道テストが可能になったことにより、米国を抜いて2位にランクインしました。

表 1: 自動運転車の準備指数

テクノロジー&イノベーションランク

インフラストラクチャランク

政策と法律のランク

消費者の受け入れ

総合順位

オランダ

4

1

3

2

1

シンガポール

8

2

1

1

2

私たち

1

7

10

4

3

スウェーデン

2

6

8

6

4

イギリス

5

10

4

3

5

ドイツ

3

12

5

12

6

カナダ

6

11

7

7

7

出典: 地理空間メディアと通信

自動運転車の利点

表 2: 自動運転車の潜在的な利点とコスト

利点

コスト/問題点

ドライバーのストレスが軽減され、

生産性

 

追加の車両装備、サービス、料金が必要

タクシーのコストを削減

サービスおよび商業輸送ドライバー

 

システムによる追加のクラッシュ

故障、プラットーン走行、交通速度の上昇、リスクの増大、車両総移動距離の増加

 

目的地での駐車場の需要を減らす

より高い道路設計とメンテナンス基準が必要になる場合がある

カーシェアリングやライドシェアリングを促進し、自動車の所有と移動、および関連コストを削減できる可能性がある。

 

自動運転に対する楽観的な予測は、他の交通改善や管理戦略を阻害する可能性がある

ソース:

自動運転車はドライバーのストレスと退屈を軽減し、生産性を向上させ、乗客が移動中に仕事をできるようにします。しかし、安全のため乗員はシートベルトを着用する必要があり、車内ベッドの使用は制限されており、他の限られた空間と同様に、車内も乱雑で汚れやすいものです。さらに、自動運転車は、何らかの理由で運転できない、または運転すべきではない人々に自立したモビリティを提供できます。これは旅行者にとって直接的な利益となり、教育や雇用の機会へのアクセスが改善されることで、旅行者の生産性が向上し、家族や友人の運転手の負担が軽減されます。

自動運転車に関連する課題

自動運転車が適切に機能するには、さまざまな機器やサービスが必要です。故障は致命的となる可能性があるため、自動運転車には専門家が設置および保守する堅牢で冗長なコンポーネントが必要であり、保守コストが増加します。現在、リモートスタート、アクティブレーンアシスト、安全カメラなどのオプションの車両アクセサリは通常数千ドルかかり、OnStarやTomTomなどのナビゲーションおよびセキュリティサービスのサブスクリプションには年間数百ドルかかります。限定的な自動運転を提供するTeslaのFull Self-Drive(FSD)サービスへのアップグレードには15,000ドルかかり、2022年には所有者がTeslaをその可用性と利点に関する虚偽の広告で訴えました。車両の所有者は、頻繁なソフトウェア更新とナビゲーションマッピングサービスに加入する必要があるでしょう。

ほとんどの自動運転車は、LiDAR(光検出と測距)、カメラ、レーダーの3つの技術を使用してナビゲートします。運転中、レーダーセンサーは周囲の物体からの電波の反射を検出します。したがって、電波の反射に必要な時間をすばやく計算することで、自動運転車は近くの物体の近さを測定できます。ただし、2台以上の車両から送信された電波が互いに干渉し、誤った信号が発生する可能性があります。画像分類は、畳み込みニューラルネットワーク(CNN)をトレーニングして、物体を認識して分類することによって行われます。CNNの問題は、モデルがすべての物体をキャプチャしない可能性が高いため、複数の物体を含む画像には最適なソリューションではないことです。ただし、全地球測位システム(GPS)を使用して他の自動運転車の正確な位置を検出できますが、壁、建物、がれき、木などのいくつかの物体を区別できない場合があります。自動運転車または自律走行車は、自分の信号を他の信号と区別できなければならないため、今後数年間で最大の課題の1つになります。

法律は、自動運転の最も重要な特徴の 1 つです。多くの場合、州法と連邦法は、これらの車によって引き起こされた事故の責任が誰にあるかについて混乱しています。日常的な自動車事故による人身傷害賠償請求で誰が過失者であるかを判断することは、すでに十分に困難です。自動運転車の場合、ドライバーの明確な定義がないため、誰が事故を引き起こし、その影響が何であったかを特定することはさらに困難です。これとは別に、ほとんどの自動運転車では、ソフトウェアが主要な意思決定者およびオペレーターです。ただし、設計はメーカーによって異なる場合があります。

コンピュータービジョンの自動運転モデル​​にはリアルタイムの物体検出機能が備わっていますが、その性能は天候、照明、走行場所によって変化する可能性があります。自動運転車には潜在的な事故を防ぐために多くのさまざまなデータセットが必要です。前述の変数によって引き起こされます。自動運転車は、LiDAR センサーとカメラを 3 次元 (3D) 地図やコンピューター ビジョン テクノロジーのデータと組み合わせて使用​​することで、距離を計算し、信号機、他の車両、歩行者を検出できます。乗客と車両の安全を確保するには、深度推定が不可欠です。 LIDAR やカメラ レーダーなど、他のいくつかのツールが重要な役割を果たしますが、ステレオ ビジョンでそれらをバックアップすると役立ちます。ただし、レンズとセンサー間の距離が車両ごとに異なる可能性があるため、カメラの配置など、他の多くの問題が発生し、深度推定システムがより困難になる可能性があります。

主要国の規制当局

自動運転車市場における新型コロナウイルス感染症の影響

新型コロナウイルス感染症(COVID-19)のパンデミックは日常生活に多大な変化をもたらしたため、自動車および運輸部門は、消費者行動の変化が経済のあらゆる部門における自動運転車(AV)技術の導入にどのような影響を与えるかに注目している。 。新型コロナウイルス感染症(COVID-19)のパンデミックは、生産から研究開発に至るまで、いくつかの OEM の業務に影響を与えています。 AV の開発と展開には短期的な混乱が生じる可能性がありますが、AV テクノロジはさまざまな分野での対応の重要な要素と見なされているため、この混乱により、消費者セグメント内での AV テクノロジ採用の新たな機会が開かれ、さまざまな商業セグメントでの採用が加速される可能性があります。緊急事態の時。また、新型コロナウイルス感染症は、長期的に AV テクノロジーに利益をもたらす可能性のある方法で、公共交通機関に対する消費者の態度を再構築しています。新車購入に対する消費者の躊躇により、OEM は AV 開発を一時停止するかもしれないが、物流会社、配送会社、外食産業による AV 採用の可能性は、OEM やその他の AV 参加者に AV テクノロジーを推進する市場のニーズを提供する可能性があります。次のレベル。現在、健康を維持することが同胞から遠く離れていることを意味する世界では、自動運転の長距離トラック、町を越える配達車両、ロボットによる食品配達がこれまで以上に魅力的に思えます。

新型コロナウイルス感染症により、商品輸送における人的側面がクローズアップされる中、物流企業はリアルタイムの自動運転システムを必要としています。コスト削減と商品のノンストップ輸送が要因である一方で、新型コロナウイルス感染症が商品の出荷を一時停止する可能性があるため、国内の商品サプライチェーンの弱点として商品の輸送という人的要因にスポットライトが当てられています。緊急時、特にパニック買いや供給制限においては、サプライチェーン全体で商品を効率的かつ確実に輸送する能力がこれまで以上に重要になります。さらに、自動車業界はジャストインタイム配送に依存しているため、トラック輸送や物流の混乱による供給の中断を許容できません。新車や中古車の購入に対する消費者の需要により、消費者分野での AV システムの導入が一時的に遅れた可能性がありますが、新型コロナウイルス感染症のパンデミックにより、日常の商取引や物流業界全体で AV がいかに重要であるかが浮き彫りになりました。

結論

自動運転車(AV)は、安全性や倫理などに基づく顧客の受け入れの問題により、最も破壊的な技術革新の1つと考えられています。AVは、自動車と人間の移動に対する世界の見方を変えており、自動車業界における重要な技術革新となっています。AVは、移動性の向上、消費される資源の量の削減、排出量の低減、駐車スペースの必要性の減少、交通安全の向上など、さまざまな利点をもたらすことができます。便利なアプリケーションの出現により、AVは多くの交通問題を解決できるようになりましたが、特定の交通状況、車両のメンテナンス、および自動運転モードを利用できない場合には、長期的な人間の介入が必要になることは間違いありません。

自動運転車市場について詳しく知りたい場合は、以下のリンクをご覧ください。

2022年から2029年の予測期間によると、半自律型および自律型市場は3.8%の成長率で大幅な成長を遂げると予想されています。Data Bridge Market Researchのレポートでは、市場に関する包括的な分析と洞察が提供され、この期間中に成長に大きな影響を与えると予想される要因が強調されています。

レポートの完全版では、データブリッジは市場規模を価値(百万米ドル)で提供するか、クライアントの要件に応じてカスタマイズします。


DBMR は、世界中のフォーチュン 500 企業の 40% 以上にサービスを提供しており、5,000 を超える顧客のネットワークを持っています。私たちのチームが喜んでご質問にお答えいたします。訪問、 https://www.databridgemarketresearch.com/jp/contact

お問い合わせ

もっと詳しく知る

影響と行動に関する追加の洞察