記事

2023年2月8日

コンピューターサイエンスはがん治療にどのように貢献しているのでしょうか?

がんは世界的に死亡原因の第 1 位です。がんに対する世界規模の戦いは新しいものではありません。すでに何十年も続いています。がんと闘い、がんに打ち勝つという世界的目標は非常に強いため、研究者から科学者まで、誰もがこの世界的な負担を終わらせるためにたゆまぬ努力を続けています。

導入

コンピュータ サイエンスの分野は、これまでがんとの戦いにおいて、目覚ましく有望な成果を挙げてきました。がんの診断と治療にコンピュータ サイエンスを応用する研究開発能力に向けた支出の増加は、世界の医療業界にとって前向きな兆候です。しかし、腫瘍学におけるコンピュータ サイエンスの役割を理解する前に、最近の世界のがん統計を見てみましょう。

How is Computer Science Contributing to Cancer Treatment

図 1: 2023 年のがん統計 (米国)

出典: Cancer.org

2023 年に男性と女性に最もよく見られるがんの診断を図 1 に示します。男性のがん発症例のほぼ半数 (48%) は前立腺がん、肺がん、気管支がん (以下、肺)、および大腸がん (CRC) で、診断例の 29% は前立腺がんのみによるものです。女性のがん診断例のうち、乳がんのみで 31% を占める一方、肺がん、CRC、乳がんを合わせると新規診断例の 52% を占めます。2023 年に米国で性別別に予測される上位 10 のがんの新規症例数と死亡者数。推定値は 10 の位に丸められており、症例数には膀胱の原位がんや基底細胞がん、扁平上皮細胞がんは含まれません。

How is Computer Science Contributing to Cancer Treatment

図 2: 性別別のがん罹患率 (1975 ~ 2019 年) および死亡率 (1975 ~ 2020 年) の傾向 (米国)

出典: Cancer.org

図 2 は、全体的ながん発症率の長期的傾向を示しています。これは、がんリスク行動のパターンや、がんスクリーニング検査などの医療慣行の変化を反映しています。たとえば、1990 年代初頭の男性発症率の急上昇は、それまでスクリーニングを受けていなかった男性の間で前立腺特異抗原 (PSA) 検査が急速に広まった結果、無症候性前立腺がんの検出が急増したことを反映しています。その後、男性のがん発症率は 2013 年頃まで減少し、2019 年まで安定しました。女性の発症率は 1980 年代半ばまで比較的安定していましたが、その後、年間 0.5% ずつゆっくりと上昇し始めました。

その結果、男女間の格差は徐々に縮小し、男性と女性の罹患率比は1992年の1.59(95%CI、1.57-1.61)から2019年には1.14(95%CI、1.14-1.15)に低下しました。ただし、リスクの差は年齢によって大きく異なります。たとえば、20歳から49歳の間では女性の割合は男性よりも約80%高く、75歳以上では男性の割合は男性よりも約50%高くなります。

C & CSc: がんとコンピュータサイエンス

これらの数字は、この蔓延する病気の恐ろしい現実を浮き彫りにするだけでなく、学者、政策立案者、その他の専門家にとっても極めて重要である。なぜなら、癌と闘う対策を考える前に、まず癌が世界人口に与える影響を理解しなければならないからである。

最近提供された技術の 1 つは、コンピューター科学者というありそうもない候補者たちに対する驚くべき行動喚起です。がんとの闘いにおけるこうした最近の進歩は、その分野の研究状況を根本的に変え、最終的には何千人もの命を救う可能性を秘めています。これは、コンピューターサイエンスがビッグデータを収集して科学全体を真剣に進歩させる可能性のある方法の 1 つにすぎません。

インド生まれのアメリカ人医師で科学者のシッダールタ・ムカジーは、著書『万病の帝王:がんの伝記』の中で、がんは主にDNAの変異によって引き起こされる遺伝性疾患であるという驚くべき最近の発見について書いています。そのため、これらの変異により、がん腫瘍は想像を絶する多様性を持ち、完全に根絶することは困難です。

その結果、がん腫瘍のゲノムの配列を決定すること(本質的には腫瘍の固有の DNA 配列を構成する謎の言語を翻訳または解読するプロセス)によって、医師は個別化された標的治療を処方できるようになることが示唆されています。がんの増殖を止めるか、完全に治すことを目的として、がん患者一人ひとりに合わせた治療を行います。

カリフォルニア大学バークレー校のアルゴリズム、マシン、および人間研究所 (AMP ラボ) の所長の 1 人である David Patterson 氏などのコンピュータ サイエンティストは、このことを研究の動機としてきました。人間の目だけでは、このような作業は到底できません。この膨大な量のデータを猛スピードで正確に、かつ首尾よく吸収し、分析するには、IBM の Watson など、世界で最も強力な認知コンピューティング プラットフォームの活用が必要です。コンピュータ サイエンティストがこの高度な技術プロセスに関与することで、次の 3 つの成果が生まれます。

  • 情報処理コストを下げることで、誰もが自分に合った治療を受けられるようになる

  • 研究者や医療専門家がアクセスできるがんゲノムリポジトリの開発につながる可能性がある

  • 前述のリポジトリを使用して、無数の薬剤の組み合わせの中から、それぞれの腫瘍に個別化された標的療法を見つけることで、非常に大きな干し草の山から小さな針を見つけることができるようになります。

腫瘍学におけるコンピュータサイエンスの拡張としての計算腫瘍学

計算生物学は、物理科学と腫瘍学を結びつけます。計算腫瘍学は医学では比較的新しい用語ですが、注目を集め始めています。世界中の巨大な医療機関が、腫瘍学という名称のついた完全な部門を設けていることを知ったら、驚く人もいるかもしれません。がんがどのように広がり、最終的に体から永久に除去できるかを研究するために、ますます多くの時間、労力、資金、リソースが費やされています。

すべてにおいて、情報が収集されるほど、長期にわたるソリューションを開発できる可能性が高まります。腫瘍増殖経路、腫瘍生物学、バイオインフォマティクス、腫瘍マーカープロファイルを整理し、これらすべてのデータに基づいて治療の予測モデルを構築するために、コンピューター腫瘍学はがんの分子的側面を整理します。

コンピュータモデルは、計算腫瘍学において、精密医療、集団スクリーニング、個々の癌細胞モデリングに役立つ腫瘍マーカー分析を作成するために使用されます。この知識により、特定の薬剤や治療技術が癌患者の病気の長期的な治療法となる可能性が高まります。

長年にわたり、そして特定の状況下では今日でも、がん患者の大多数は「広範に適用された」治療しか受けていません。特定の治療法が一部の患者には有効で、他の患者には有効でない理由を正確に判断するのに分子マーカーが欠如しているか、あまり役に立たない場合です。患者にさらに良いサービスを提供するために、計算腫瘍学部門は、次世代シーケンシング (NGS) によって健康な細胞と病気の細胞の両方で利用可能になったゲノムに関する豊富な情報を取得し、データベースに整理することができます。

この新興医学分野のあらゆる側面を管理するために、一部の部門ではコンピューター サイエンスまたは実験科学のスキル セットを持つ人材を求めています。教育者、科学者、臨床医にとって、この分野は拡大しています。国際研究機関によると、私たちは協力することで知識とスキルを高め、世界中のがんの負担を軽減することができます。がんの負担は、2012年の新規症例数が2012年の1,410万人から2030年までに年間2,360万人に増加すると予測されています。がんについて。

Data Bridge Market Research は、がん診断市場は予測期間中の CAGR 7.29% で、2029 年までに 282 億 1,000 万米ドルに達すると予測されていると分析しています。北米は、多数のバイオテクノロジーおよび医療機器企業の存在感の増大、研究開発プロジェクトに利用できる資金の増加、およびこの地域における先進技術の高度な導入により、がん診断市場を支配しています。がん診断市場で活動している主要企業には、アボット社があります。 (米国)、DiagnoCure Inc. (カナダ)、Thermo Fisher Scientific Inc. (米国)、Illumina, Inc. (米国)、QIAGEN (ドイツ)、および F. Hoffmann-La Roche Ltd (スイス)。

この研究の詳細については、以下をご覧ください。 https://www.databridgemarketresearch.com/jp/reports/global-cancer-diagnostics-market

「マイクロソフトの 10 年にわたる野心」

マイクロソフトは、機械学習やアルゴリズムなどのコンピューター サイエンスをがんと闘うために活用しています。マイクロソフトの研究者は、情報処理システムのようにがんにアプローチすることで、計算プロセスのモデル化に一般的に使用される技術を修正して、生物学的なプロセスをシミュレートできるようになりました。

同社の最終目標は、がん細胞が発見されるとすぐに、体にがん細胞と戦うよう指示する分子コンピューターを開発することです。これをデータ主導の戦略と組み合わせることで、マイクロソフトの病気と戦う取り組みは機械学習に集中しています。同社は分析ツールを導入して既存の生物学的データを取得し、それを使って病気をより深く理解し、治療したいと考えています。

これは単なる類推ではなく、深遠な数学的発見です。生物学とコンピューティングは極のように離れているように見えますが、実際には最も基本的なレベルで非常に深い関係があります。たとえば、機械学習と自然言語処理は、利用可能な研究データを分類する方法を提供するために利用されており、そのデータは腫瘍専門医に提供され、患者にとって最も効果的でカスタマイズされたがん治療を生み出すことができます。

現在、利用可能な情報は膨大で、一人ですべてを読んで理解するのは困難です。機械学習は人間よりも迅速かつ簡単に情報を処理できます。

機械学習はコンピューター ビジョンと組み合わせて、放射線科医が患者の腫瘍がどのように進行しているかをよりよく理解できるようにします。研究者らは、将来的には 3D スキャンからのピクセルを分析して、前回のスキャン以降に腫瘍がどれだけ成長、縮小、または形状変化したかを正確に判断するシステムを開発中です。ケンブリッジ研究所の生物学的計算研究部門の責任者、アンドリュー・フィリップス氏によると、科学者はソフトウェア業界のパイオニアとしてのマイクロソフトの功績から学ぶことができるという。 「コンピューターをプログラミングするために発見した技術を使用して、生物学をプログラムすることができます」と彼は付け加えた。 「これにより、はるかに多くの用途とさらに優れた治療法が開かれるでしょう。」

フィリップス氏は、細胞内に挿入して病気を追跡できる分子コンピューターを開発している。センサーがそれが癌のようなものであることを検出すると、病気と戦うための反応が引き起こされます。この種の研究では、従来のコンピューティングを採用し、それをバイオテクノロジーや医療用途に再利用することで、コンピューターにそうするようにプログラムするのと同じ方法で、病気と闘うように身体を訓練することが可能になります。

研究はまだ初期段階にあるが、フィリップス氏はテレグラフ紙に対し、「5年から10年以内に」この方法で病気と闘うためのスマート分子システムを移植することが技術的に可能になるだろうと語った。

結論

がん研究はますますオンラインで行われるようになっています。コンピューター科学者は、今後 10 年間でがんと闘うための最高の才能を持っている可能性があるため、大挙して参加するべきです。がん腫瘍のゲノムを解析することで、医療専門家は、がんの進行を遅らせたり止めたりするためのカスタマイズされた標的治療をすぐに提供できるようになると期待されています。

コンピュータ サイエンスがいかに急速に患者の生活に影響を与え、がん研究に取り入れられてきたかを考えると、今後数年間は、同等かそれ以上に生産的になると予測するのは妥当なようです。今後 10 年間で、医療従事者は健康な組織と病気の組織がどのように発達し、進化するかの詳細なマップを作成できるようになると予想されています。これらのマップは、がんの新しい診断と治療法の設計に役立ちます。

データブリッジマーケットリサーチの分析によると、2022年に96億4,000万米ドルだったヘルスケア市場における人工知能は、2023年から2030年の予測期間中に51.87%のCAGRで成長し、2030年には2,729億1,000万米ドルに達すると予想されています。ヘルスケア市場における人工知能は、提供内容、技術、エンドユーザー、およびアプリケーションに基づいてセグメント化されています。アジア太平洋地域は、認識を促進するための政府の取り組みの増加、医療ツーリズムの増加、およびこの地域での質の高いヘルスケアに対する需要の高まりにより、2023年から2030年の予測期間中に最高の成長率で成長すると予想されています。

研究の詳細については、次のサイトをご覧ください。 https://www.databridgemarketresearch.com/jp/reports/global-artificial-intelligence-in-healthcare-market


お客様の声