Aperçu

Ces dernières années, la conduite autonome, également appelée robotaxis, est devenue l'un des sujets d'actualité de l'industrie automobile. Le marché de l’automobile, des transports et de la mobilité au sens large subit un changement social, technologique et économique transformationnel, modifiant fondamentalement la manière dont les personnes et les produits sont déplacés. Dans un contexte de croissance démographique continue, d’urbanisation et de préoccupations environnementales, de nouvelles formes de mobilité sont essentielles pour soutenir les pôles de population et l’activité économique de demain.

Selon la période de prévision de 2022 à 2029, le marché des véhicules de luxe autonomes devrait connaître une croissance significative, avec un taux projeté de 36,16 %. Le rapport de Data Bridge Market Research propose une analyse complète et des informations sur le marché, mettant en évidence les facteurs qui devraient avoir une influence majeure sur sa croissance au cours de cette période.

Les géants de la technologie, les principaux acteurs du logiciel et les startups de la nouvelle mobilité sont également sur le point de récolter les fruits d’une toute nouvelle ère de mobilité future. De nos jours, la voiture se transforme en plateforme permettant de remplir diverses fonctions. Par conséquent, les véhicules autonomes deviennent des produits beaucoup plus pilotés par logiciel que les voitures traditionnelles. Une voiture autonome est un véhicule capable de détecter son environnement et de fonctionner sans intervention humaine. Les progrès de la technologie des capteurs, du LiDAR et de l’imagerie radar 4D, entre autres, ouvrent la voie à un véhicule entièrement autonome. Ces technologies sont utilisées pour collecter des données spécifiques en temps réel qui permettent au véhicule de prendre des décisions en temps opportun.

Il n’est à aucun moment nécessaire qu’un passager humain prenne le contrôle du véhicule, ni qu’un passager humain soit présent. Les fabricants et fournisseurs traditionnels travaillent extrêmement dur pour raccourcir continuellement les cycles de développement et rattraper l'inévitable transition vers la nouvelle ère du logiciel. Cependant, des modèles de travail collaboratifs agiles, principalement connus dans l'industrie du logiciel, et des approches de gestion de coopération plus innovantes ouvrent la voie pour relever ces défis et les transformer en opportunités.

Qu’est-ce que le véhicule autonome ?

The Digital Transformation of Mobility: Self-Driven Cars

L’apprentissage profond est l’aspect central de la partie automatisation des véhicules autonomes. Les AV peuvent prendre des décisions calculées basées sur divers modèles de formation et sur l'acquisition de données en temps réel. Les récents développements de l’apprentissage profond et de l’intelligence artificielle ont permis aux voitures autonomes de réagir à des situations à haut risque et de contrer les problèmes de suivi des obstacles dus aux conditions météorologiques. Une voiture autonome ou voiture sans conducteur est un véhicule qui utilise une combinaison de capteurs, de caméras, de radars et d'intelligence artificielle (IA) pour voyager entre des destinations sans opérateur humain. Les entreprises développant et/ou testant des voitures autonomes comprennent Audi, BMW, Ford, Google, General Motors, Tesla, Volkswagen et Volvo.

Scénario du marché mondial des véhicules autonomes

Le véhicule autonome révolutionne l’expérience de mobilité des consommateurs à travers le monde. Grâce aux progrès technologiques, les voitures autonomes seront plus sûres que les véhicules à conduite humaine. Aux États-Unis, 30 000 vies sont perdues chaque année dans des accidents de la route, souvent dus à la fatigue, à des erreurs humaines et à l'alcool au volant.

De nos jours, la plupart des voitures incluent des fonctionnalités de base ADAS (systèmes avancés d’aide à la conduite) et peuvent fonctionner sans ces comportements, ce qui pourrait potentiellement sauver des milliers de vies. La plupart des voitures autonomes sont équipées d'un système de freinage d'urgence automatisé conçu pour détecter lorsque la voiture s'approche d'un danger, comme un arrêt soudain de la circulation. De plus, des systèmes de freinage d'urgence automatisés peuvent être configurés pour détecter et réagir aux piétons, cyclistes ou autres véhicules sur la route. Les premières voitures autonomes ont été lancées par Waymo en 2018 pour offrir à des milliards de personnes une mobilité plus sûre, plus propre et plus pratique. La flotte autonome de 600 voitures de Waymo a parcouru plus de kilomètres en autonomie que n'importe quel concurrent. En fait, en octobre 2018, la flotte a parcouru plus de 16 millions de kilomètres sur les voies publiques de 25 villes, mais l'accent a été mis sur les rues de Mountain View (CA), Austin (TX), Kirkland (WA) et Phoenix (AZ). . En août 2018, la société de covoiturage Lyft a annoncé que ses clients avaient payé plus de 5 000 trajets autonomes à Las Vegas à l'aide de son application mobile. Le service a été lancé à Las Vegas en janvier avec 30 voitures BMW, mais l'entreprise comptait alors 75 voitures dans sa flotte.

Stratégies clés adoptées par les constructeurs automobiles

Niveau d'automatisation dans les véhicules autonomes

La Society of Automotive Engineers (SAE) définit 6 niveaux d'automatisation de la conduite allant de 0 (entièrement manuel) à 5 (entièrement autonome), que le ministère américain des Transports a adoptés.

Niveau 0 (pas d'automatisation de la conduite)

Véhicule équipé d'aucune fonctionnalité automatisée et le conducteur a le contrôle total du véhicule

Niveau 1 (Assistance au conducteur)

Véhicule équipé d'une ou plusieurs fonctionnalités automatisées principales telles que le régulateur de vitesse, mais nécessitant que le conducteur effectue toutes les autres tâches

Niveau 2 (automatisation de conduite partielle)

Véhicule équipé de deux ou plusieurs fonctionnalités principales telles que le régulateur de vitesse adaptatif. Le véhicule peut contrôler à la fois la direction et l’accélération/décélération. Ici, l'automatisation est loin d'être une conduite autonome, car un humain est assis dans le siège du conducteur et peut prendre le contrôle de la voiture à tout moment. Les systèmes Tesla Autopilot et Cadillac (General Motors) Super Cruise sont tous deux qualifiés de niveau 2.

Niveau 3 (automatisation de la conduite conditionnelle)

Véhicule équipé de fonctionnalités qui permettent au conducteur d'abandonner la fonction de sécurité critique du véhicule en fonction des conditions de circulation et de l'environnement. Le conducteur devrait reprendre le contrôle du véhicule compte tenu des contraintes des fonctionnalités automatisées après une période de transition.

Niveau 4 (haute automatisation de la conduite)

Les véhicules de niveau 4 peuvent fonctionner en mode de conduite autonome et la principale différence entre l'automatisation de niveau 3 et de niveau 4 est que les véhicules de niveau 4 peuvent intervenir en cas de problème ou de panne du système.

Par exemple,

  • NAVYA, une entreprise française, construit et vend déjà aux États-Unis des navettes et des taxis de niveau 4 qui fonctionnent entièrement à l'énergie électrique et peuvent atteindre une vitesse de pointe de 55 mph.
  • En novembre 2019, Volvo et Baidu ont annoncé un partenariat stratégique pour développer conjointement des véhicules électriques de niveau 4 qui desserviront le marché des robots-taxis en Chine.

Niveau 5 (automatisation complète de la conduite)

Véhicule entièrement autonome qui surveille les conditions routières et effectue des tâches critiques pour la sécurité tout au long du trajet avec ou sans la présence du conducteur.

Source : MER

La technologie clé de la voiture autonome ou des véhicules autonomes

Le contrôle automatique, l'architecture, l'intelligence artificielle, la vision par ordinateur et de nombreuses autres technologies sont intégrés dans la voiture autonome, qui est le produit d'une informatique hautement développée, de la reconnaissance de formes et d'une technologie de contrôle intelligent.

Les défis rencontrés par les voitures autonomes

Le principal obstacle auquel sont confrontés les véhicules autonomes de niveau 5 est que la technologie n’est pas suffisamment avancée pour créer un véritable véhicule autonome de niveau 5. Les véhicules d'essai Cruise de General Motors et les voitures Nuro ne sont que les premières étapes du développement de voitures de niveau 5. La méfiance du public à l'égard des véhicules sans conducteur est un autre obstacle que les véhicules autonomes de niveau 5 doivent surmonter. Les voitures actuelles de niveau 3 ont été impliquées dans des accidents, ce qui soulève de réelles inquiétudes quant à la sécurité des voitures de niveau 5 car elles sont entièrement autonomes. En dehors de cela, de nombreux défis restent à relever dans la conception de systèmes entièrement autonomes pour les voitures sans conducteur.

Les voitures autonomes ont du mal à interpréter des situations inhabituelles, comme un agent de la circulation qui fait signe aux véhicules de passer un feu rouge. Une programmation simple basée sur des règles ne fonctionnera pas toujours, car il est impossible de coder à l'avance chaque scénario. Par conséquent, l'idée d'un véhicule « sans conducteur ou autonome » sur la route a intrigué des personnes de tous les domaines de la vie, car il existe de nombreux problèmes liés au contrôle des voitures autonomes et de nombreux facteurs de déplacement qui doivent être gérés. et régulé simultanément pendant la conduite.

Principaux pays prêts pour les véhicules autonomes

L'évolution continue de la technologie automobile, y compris les technologies d'aide à la conduite et les systèmes de conduite automatisée, vise à offrir des avantages encore plus importants en matière de sécurité. Le monde a été envahi par les véhicules autonomes et leur développement progresse incroyablement. Alors que les Pays-Bas sont considérés comme le leader émergent dans cet indice de préparation aux véhicules autonomes en raison de leur excellente infrastructure routière, d'un gouvernement très favorable et de l'adoption enthousiaste des véhicules électriques, Singapour a devancé les États-Unis au deuxième rang, en grande partie grâce à la modification de son code routier. loi sur la circulation routière permettant de tester les véhicules autonomes sur la voie publique.

Tableau 1 : Indice de préparation aux véhicules autonomes

Pays

Classement Technologie et Innovation

Rang des infrastructures

Rang politique et législative

Acceptation du consommateur

Classement général

Les Pays-Bas

4

1

3

2

1

Singapour

8

2

1

1

2

NOUS

1

7

dix

4

3

Suède

2

6

8

6

4

ROYAUME-UNI

5

dix

4

3

5

Allemagne

3

12

5

12

6

Canada

6

11

7

7

7

Source : Médias géospatiaux et communications

Avantages des véhicules autonomes

Tableau 2 : Avantages et coûts potentiels des véhicules autonomes

Avantages

Coûts/Problèmes

Réduction du stress des conducteurs et augmentation

Productivité

 

Nécessite un équipement de véhicule, des services et des frais supplémentaires

Réduit les coûts pour les taxis

chauffeurs de services et de transports commerciaux

 

Crashes supplémentaires causés par le système

pannes, peloton, vitesses de circulation plus élevées, prise de risque supplémentaire et augmentation du déplacement total du véhicule

 

Réduit la demande de stationnement dans les destinations

Peut nécessiter des normes plus élevées en matière de conception et d’entretien des routes

Pourrait faciliter le partage de voitures et le covoiturage, réduisant ainsi la possession totale de véhicules et les déplacements, ainsi que les coûts associés.

 

Les prédictions optimistes de la conduite autonome pourraient décourager d’autres améliorations et stratégies de gestion des transports

Source:

Les véhicules autonomes peuvent réduire le stress et l'ennui du conducteur et augmenter sa productivité, permettant ainsi aux passagers de travailler tout en voyageant. Cependant, pour des raisons de sécurité, les occupants doivent porter la ceinture de sécurité, ce qui limite l'utilisation des lits à bord du véhicule et, comme tout espace confiné, l'intérieur du véhicule risque de devenir encombré et sale. De plus, les véhicules autonomes peuvent offrir une mobilité indépendante aux personnes qui, pour une raison quelconque, ne peuvent ou ne doivent pas conduire. Cela profite directement à ces voyageurs et, en améliorant leur accès à l’éducation et aux opportunités d’emploi, peut augmenter leur productivité et réduire la charge de chauffeur pour les membres de leur famille et leurs amis.

Défis associés aux véhicules autonomes

Les véhicules autonomes nécessitent divers équipements et services pour fonctionner correctement. Les pannes pouvant être mortelles, les véhicules autonomes nécessitent des composants robustes et redondants installés et entretenus par des spécialistes, ce qui augmente les coûts de maintenance. Actuellement, les accessoires optionnels du véhicule, tels que le démarrage à distance, l'assistance active sur la voie et les caméras de sécurité, coûtent généralement plusieurs milliers de dollars, et les abonnements aux services de navigation et de sécurité, tels que OnStar et TomTom, coûtent des centaines de dollars par an. La mise à niveau vers les services Full Self-Drive (FSD) de Tesla, qui offrent un fonctionnement autonome limité, coûte 15 000 USD et, en 2022, les propriétaires ont poursuivi Tesla en justice pour fausse publicité sur sa disponibilité et ses avantages. Les propriétaires de véhicules devront probablement s'abonner à des mises à jour logicielles fréquentes et à des services de cartographie de navigation.

La plupart des voitures autonomes utilisent trois technologies pour naviguer : LiDAR (Light Detection and Ranging), caméras et radar. Lors de la conduite, les capteurs radar détectent les réflexions des ondes radio des objets environnants. Ainsi, un calcul rapide du temps nécessaire à la réflexion des ondes radio permet à la voiture autonome de mesurer la proximité des objets proches. Mais il est probable que les ondes radio transmises par deux ou plusieurs véhicules proches les uns des autres interfèrent les unes avec les autres, ce qui entraînera de faux signaux. ‍La classification des images se fait en entraînant le réseau neuronal convolutif (CNN) à reconnaître et à classer les objets. Le problème avec CNN est que ce n'est pas la meilleure solution pour les images contenant plusieurs objets, car le modèle ne capturera probablement pas tous les objets. Cependant, le système de positionnement global (GPS) peut être utilisé pour détecter la position exacte d'autres véhicules autonomes, mais parfois ils ne sont pas capables de distinguer quelques objets tels que des murs, des bâtiments, des débris et des arbres. Une voiture autonome ou autonome doit être capable de distinguer ses propres signaux des autres, ce sera donc l'un des plus grands défis des années à venir.

La législation est l’une des caractéristiques les plus essentielles de la conduite autonome. Dans de nombreux cas, les lois fédérales et étatiques ne savent pas qui serait responsable des accidents provoqués par ces voitures. Déterminer qui est responsable des réclamations pour dommages corporels résultant d’accidents de voiture courants est déjà assez difficile. Comme il n’existe pas de définition distincte du conducteur dans le cas des véhicules autonomes, il est plus difficile de déterminer qui a causé l’accident et quels ont été ses effets. En dehors de cela, dans la plupart des voitures autonomes, le logiciel est le principal décideur et opérateur. Mais la conception peut varier selon le fabricant.

Bien que le modèle de conduite autonome de vision par ordinateur dispose d'un détecteur d'objets en temps réel, ses performances peuvent changer en fonction de la météo, de l'éclairage et de l'emplacement dans lequel il se trouve. Les véhicules autonomes ont besoin de nombreux ensembles de données différents pour éviter tout accident potentiel. causée par les variables mentionnées ci-dessus. Les véhicules autonomes peuvent calculer les distances et détecter les feux de circulation, les autres véhicules et les piétons en utilisant des capteurs et des caméras LiDAR en conjonction avec des données provenant de cartes tridimensionnelles (3D) et de la technologie de vision par ordinateur. Afin d’assurer la sécurité des passagers et du véhicule, l’estimation de la profondeur est indispensable. Bien que plusieurs autres outils jouent un rôle clé, tels que le LIDAR et la caméra radar, il est utile de les associer à une vision stéréo. Cependant, cela laisse place à de nombreux autres problèmes, tels que la disposition des caméras, car la distance entre les objectifs et le capteur peut être différente pour chaque véhicule, ce qui rend le système d'estimation de la profondeur plus difficile.

Autorités de régulation dans les principaux pays

Impact de Covid-19 sur le marché des véhicules autonomes

La pandémie de COVID-19 a entraîné d'énormes changements dans la vie quotidienne. Les secteurs de l'automobile et des transports surveillent donc la manière dont les changements de comportement des consommateurs peuvent affecter l'adoption des technologies de véhicules autonomes (VA) dans tous les secteurs de l'économie. . La pandémie de COVID-19 a influencé les opérations de plusieurs équipementiers, de la production à la R&D. Bien qu'il puisse y avoir une perturbation à court terme du développement et du déploiement de l'audiovisuel, cette perturbation pourrait ouvrir de nouvelles opportunités pour l'adoption de la technologie audiovisuelle au sein des segments de consommation et accélérer l'adoption dans divers segments commerciaux, la technologie audiovisuelle étant considérée comme un élément crucial de réponse dans périodes d’urgence. La COVID-19 remodèle également l’attitude des consommateurs à l’égard des transports en commun d’une manière qui pourrait bénéficier à la technologie audiovisuelle à long terme. Même si l'hésitation des consommateurs à l'égard de l'achat de voitures neuves pourrait inciter les équipementiers à interrompre le développement de l'audiovisuel, le potentiel d'adoption de l'audiovisuel par les entreprises de logistique, les sociétés de livraison et le secteur de la restauration pourrait fournir aux équipementiers et aux autres acteurs de l'audiovisuel le besoin du marché de propulser la technologie audiovisuelle vers le niveau suivant. Dans un monde où rester en bonne santé signifie désormais rester loin de nos concitoyens, les camions longue distance autonomes, les véhicules de livraison interurbains et la livraison robotisée de nourriture semblent plus attrayants que jamais.

Alors que le COVID-19 met l’aspect humain du transport de marchandises sous le feu des projecteurs, les entreprises de logistique ont besoin de systèmes de conduite autonome en temps réel. Bien que les économies de coûts et le transit ininterrompu des marchandises soient des facteurs, la capacité du COVID-19 à suspendre l’expédition des marchandises a mis en lumière le facteur humain du transport des marchandises en tant que maillon faible de notre chaîne d’approvisionnement nationale en marchandises. En cas d'urgence, la capacité à transporter des marchandises de manière efficace et fiable tout au long de la chaîne d'approvisionnement est plus importante que jamais, en particulier en cas de panique d'achat et de contraintes d'approvisionnement. De plus, la dépendance du secteur automobile à l'égard de la livraison juste à temps ne peut pas permettre une interruption de l'approvisionnement due aux perturbations du transport routier et de la logistique. Alors que la demande des consommateurs pour l’achat de voitures neuves et d’occasion a peut-être momentanément retardé l’adoption des systèmes audiovisuels dans le segment grand public, la pandémie de COVID-19 a mis en évidence l’importance de l’AV dans le commerce quotidien et le secteur de la logistique.

Conclusion

Les véhicules autonomes (VA) sont considérés comme l'une des innovations technologiques les plus révolutionnaires en raison des problèmes d'acceptation par les clients, fondés sur la sécurité et l'éthique, entre autres. Les véhicules utilitaires changent la façon dont le monde perçoit les véhicules et la mobilité humaine et constituent une innovation technologique importante dans l'industrie automobile. Ils peuvent apporter de nombreux avantages, tels qu'une augmentation de la mobilité, une réduction de la quantité de ressources consommées, un niveau d'émissions plus faible, une diminution du besoin de places de stationnement et une augmentation de la sécurité routière. Bien que l'émergence d'applications utiles ait permis à l'AV de résoudre un certain nombre de problèmes de circulation, il est admis qu'une interaction humaine à long terme sera nécessaire dans certaines situations de circulation, lors de l'entretien des véhicules et lorsque le mode de conduite autonome ne peut pas être utilisé.

Pour en savoir plus sur le marché des véhicules autonomes, veuillez visiter le lien ci-dessous

Selon la période de prévision de 2022 à 2029, le marché semi-autonome et autonome devrait connaître une croissance significative, avec un taux projeté de 3,8 %. Le rapport de Data Bridge Market Research propose une analyse complète et des informations sur le marché, mettant en évidence les facteurs qui devraient avoir une influence majeure sur sa croissance au cours de cette période.

Dans la version complète du rapport, Data Bridge fournira la taille du marché en termes de valeur (millions USD) ou la personnalisera selon les exigences du client.


DBMR a servi plus de 40 % des entreprises Fortune 500 à l'échelle internationale et dispose d'un réseau de plus de 5 000 clients. Notre équipe se fera un plaisir de vous aider avec vos questions. Visite, https://www.databridgemarketresearch.com/fr/contact

Contactez-nous

APPRENDRE ENCORE PLUS

Informations supplémentaires sur l'impact et les actions