Aperçu
Le terme « IA générative en robotique » décrit l'utilisation de méthodes d'intelligence artificielle générative dans la conception, l'optimisation et le contrôle de systèmes robotiques. Des exemples de ces méthodes incluent les réseaux contradictoires génératifs (GAN), les auto-encodeurs variationnels (VAE) et d'autres modèles d'apprentissage en profondeur. Ces méthodes offrent aux robots la capacité d’apprendre à partir des données, de proposer de nouvelles idées et de s’adapter à un environnement changeant, ce qui augmente leur adaptabilité et leur efficacité.
La robotique et l’IA générative ont ensemble un énorme potentiel pour changer ce que les robots peuvent accomplir. Il peut améliorer l'autonomie du robot, imiter la créativité humaine et permettre un apprentissage adaptatif et non supervisé en fusionnant les techniques d'IA générative avec la robotique. Le sujet de l’intelligence artificielle générative en robotique est en constante évolution en raison des études continues et des développements technologiques. Il existe de nombreuses utilisations possibles, notamment dans les soins de santé, l’industrie manufacturière, la boulangerie et les institutions financières. L'influence se fera sentir dans la satisfaction des clients et l'efficacité opérationnelle. En travaillant ensemble, le gouvernement, les établissements universitaires et les entreprises peuvent garantir que les normes éthiques et les cadres juridiques suivent le développement de l'IA générative, ce qui aboutira à son application responsable et avantageuse.
Figure 1 : Robotique IA générative
Types de méthodes d'IA générative utilisées en robotique
- Réseaux adverses génératifs (GAN) : Une approche de formation contradictoire est utilisée pour former les réseaux neuronaux générateurs et discriminateurs en tandem. Tandis que le discriminateur apprend à distinguer les échantillons authentiques des échantillons produits, le générateur apprend à produire des échantillons de données réalistes. Les GAN peuvent être utilisés en robotique pour produire des données de capteurs réalistes, des stratégies de contrôle et d'autres composants du système
- Auto-encodeurs variationnels (VAE) : Les VAE sont une classe de modèles génératifs qui peuvent être entraînés pour coder et décoder des données dans différents espaces de données, chacun ayant une dimension inférieure. Les VAE ont le potentiel d'améliorer l'apprentissage et l'optimisation en robotique en apprenant des représentations compactes des données des capteurs, des stratégies de contrôle et d'autres fonctionnalités des systèmes robotiques.
- Apprentissage par renforcement (RL) : Il s’agit d’une sorte d’apprentissage automatique dans lequel un agent acquiert des compétences décisionnelles grâce à une interaction avec son environnement et à des retours sous forme de récompenses ou de pénalités. Pour apprendre les politiques de contrôle, la planification de trajectoires et d'autres tâches de prise de décision en robotique, les approches d'IA générative peuvent être intégrées à l'apprentissage par renforcement.
- Méthodes évolutives (EA) : La sélection naturelle sert d'inspiration à cette classe de méthodes d'optimisation. En améliorant de manière itérative les solutions potentielles sur plusieurs générations, les algorithmes évolutionnaires (EA) en robotique peuvent être utilisés pour optimiser la conception de composants robotiques, les stratégies de contrôle et d'autres aspects des systèmes robotiques.
Figure 2 : Avantages de la robotique IA générative
Défis rencontrés lors de l'adoption de robots d'IA génératifs
Les considérations et les obstacles abondent lors de l’intégration de l’IA générative aux robots. Pour garantir l’application appropriée et efficace de l’IA générative en robotique, les problèmes de déploiement, les contraintes technologiques et les considérations éthiques doivent être soigneusement pris en compte.
- Difficultés d'intégration et de déploiement : Il peut être difficile d’intégrer l’IA générative dans les systèmes robotiques actuels. Il doit fonctionner avec différents types de matériel et de logiciels et doit s'intégrer de manière transparente à l'ensemble de l'architecture du système. De plus, des problèmes de capacité de traitement, de consommation d’énergie et de prise de décision en temps réel surviennent lorsque des modèles d’IA génératifs sont mis en œuvre sur des robots dans des contextes pratiques. De plus, l’intégration de l’IA générative dans la robotique soulève des questions concernant la communication et la coopération homme-robot. Il faut beaucoup de planification et de réflexion pour s'assurer que les robots peuvent interagir et travailler avec les gens de manière sûre et fiable.
- Incertitudes et contraintes techniques: Même si l’IA générative a beaucoup de potentiel, il reste encore certaines questions sans réponse et restrictions techniques. La capacité de produire un travail véritablement original et innovant est l’une de ces difficultés. Même si les modèles d’IA générative peuvent fournir des résultats remarquables, ils dépendent souvent de modèles et d’instances issus de données préexistantes. La recherche d’une véritable créativité et innovation reste un problème de recherche. En outre, des doutes subsistent quant à la fiabilité et à la résilience des modèles d’IA générative. Les attaques contradictoires, dans lesquelles des acteurs malveillants contrôlent les systèmes d’IA, constituent une préoccupation importante. Une recherche et un développement constants sont nécessaires pour garantir la sécurité et l’intégrité de l’IA générative en robotique, ce qui constitue une caractéristique cruciale.
- Évolutivité : Il peut s'avérer difficile de faire évoluer les modèles d'IA générative vers des systèmes robotiques à grande échelle ou des applications en temps réel en raison de leurs coûts de calcul élevés.
- Exigences en matière de données: Pour certaines applications robotiques, obtenir les vastes volumes de données nécessaires au bon entraînement des algorithmes d’IA générative peut s’avérer un défi.
- Implications pour l’éthique : L’utilisation de l’IA générative en robotique suscite d’importantes préoccupations éthiques. Il est de plus en plus important de s’assurer que les décisions prises par des robots de plus en plus autonomes et sophistiqués respectent les normes et valeurs morales. Il est important de traiter correctement les questions telles que la responsabilité, la confidentialité et les préjugés afin d’éviter toute répercussion involontaire ou tout préjudice potentiel. En travaillant ensemble, les développeurs, les universitaires et les politiciens doivent créer des normes morales pour la création et l'application de l'IA générative en robotique.
Ces défis peuvent être surmontés et peuvent même créer des applications robotiques éthiques et significatives de l'IA générative en participant activement à la recherche et en travaillant avec différentes sociétés associées en prenant différentes décisions stratégiques telles que le partenariat, la collaboration, la fusion et l'acquisition.
Applications clés de l'IA générative dans le domaine de la robotique
- Conception robotique : En produisant des configurations innovantes qui équilibrent coût et performances, les approches d’IA générative peuvent être appliquées pour optimiser la conception de pièces robotiques, notamment les articulations, les actionneurs et les membres. Des systèmes robotiques robustes et plus efficaces pourraient en résulter
- Planification et contrôle du mouvement du robot : Les ramifications importantes de l’IA générative s’étendent également à la planification et au contrôle des mouvements des robots. Les robots peuvent créer des plans de mouvement optimisés à la fois pour l’efficacité et la sécurité, car ils peuvent apprendre de grands ensembles de données. Les robots peuvent créer une variété de trajectoires de mouvement réalistes en utilisant des algorithmes génératifs, qui les aident à naviguer avec précision dans des environnements difficiles. Ceci est particulièrement utile pour les applications, notamment la logistique et l’automatisation des entrepôts, où les robots doivent manœuvrer dans des zones très fréquentées et communiquer avec des personnes et d’autres objets.
- Collaboration et interaction homme-robot : Grâce à l’utilisation de l’IA générative, l’interaction et la collaboration homme-robot pourraient être améliorées, conduisant à des robots plus intelligents et navigables par l’homme. Les robots peuvent être entraînés à produire des comportements authentiques et semblables à ceux des humains grâce à l’utilisation d’approches d’IA générative, qui permettront une communication et une coopération fluides avec les gens. Par exemple, des chatbots et des assistants virtuels capables de converser naturellement avec les utilisateurs et d'offrir une aide et un support personnalisés peuvent être créés à l'aide de l'IA générative.
Outre ces utilisations, l’IA générative a le potentiel de révolutionner un certain nombre d’autres secteurs, notamment l’industrie, la santé, la finance et l’éducation. Les robots pourraient désormais être capables d’effectuer des tâches difficiles, de s’adapter à un environnement changeant et d’interagir de manière plus significative avec les gens grâce aux développements et aux percées de l’IA générative.
- Tests et simulations : Avant de déployer leurs conceptions, les ingénieurs peuvent tester et améliorer celles-ci à l’aide de simulations réalistes de systèmes robotiques et de leurs paramètres, produits à l’aide de modèles d’IA génératifs. Cela peut réduire le temps et les coûts de développement tout en améliorant la fiabilité des systèmes robotiques. Les algorithmes génératifs peuvent trouver leur place dans les systèmes qui dirigent les mouvements d'un robot. Dobb-E, un robot qui apprend les tâches via des séquences vidéo iPhone, est l'un des premiers exemples
- Détection et perception robotiques : La robotique s'appuie fortement sur l'IA générative pour améliorer ses capacités de perception et de détection. Grâce à l’utilisation de la modélisation générative et des réseaux contradictoires génératifs (GAN), les robots peuvent être entraînés à produire des données artificielles qui reproduisent les entrées des capteurs du monde réel. Les robots peuvent mieux comprendre leur environnement en utilisant ces données artificielles pour entraîner et améliorer les algorithmes de perception. Par exemple, l’IA générative peut contribuer à améliorer la précision des systèmes de détection et de reconnaissance d’objets dans les voitures autonomes, améliorant ainsi leur fiabilité et leur sécurité.
Le marché mondial des chatbots connaît une croissance substantielle ces dernières années en raison du besoin croissant de chatbots basés sur l’IA pour offrir une expérience client améliorée. De plus, l’utilisation croissante de l’IA générative dans les robots et les initiatives croissantes visant à construire des robots auto-apprenants pour une expérience conversationnelle semblable à celle des humains sont d’autres facteurs qui tendent à favoriser la croissance dans les années à venir. Selon l’analyse de Data Bridge Market Research, le marché mondial des chatbots devrait croître à un taux de croissance annuel composé (TCAC) de 22,10 % de 2021 à 2029.
Pour en savoir plus sur l’étude, visitez :https://www.databridgemarketresearch.com/fr/reports/global-chatbots-market
Voici les exemples liés à l'IA générative dans le domaine de la robotique :
- En février 2024, la prochaine phase de l'expansion de la main-d'œuvre robotique d'Amazon a été révélée. La société a déclaré que le nouveau système Sequioa, qui connectait les robots de différentes parties de l'entrepôt pour former une seule équipe autonome, avait considérablement amélioré l'efficacité opérationnelle. La robotique et l’automatisation ont beaucoup de potentiel grâce à l’IA générative. En conséquence, le géant de la technologie tente actuellement de collecter des fonds pour une classe de robots plus avancée. Le fonds d'innovation industrielle de l'entreprise accélérera les investissements dans les entreprises axées sur la robotique et l'IA
- En novembre 2023, DeepMind de Google a dévoilé Open X-Embodiment, une base de données de fonctionnalités robotiques développée en partenariat avec 33 instituts universitaires. Les chercheurs ont comparé la méthode à ImageNet, la base de données historique créée en 2009 et qui héberge actuellement plus de 14 millions de photos. Plus de 500 talents et 150 000 activités ont été collectés à partir de 22 incarnations de robots pour créer Open X-Embodiment. Par rapport aux techniques internes, DeepMind a signalé un taux de réussite de 50 % lors de l'utilisation des données pour entraîner son modèle RT-1-X, qu'il a ensuite utilisé pour entraîner des robots dans d'autres laboratoires. Il ne fait aucun doute que l’IA (en particulier la forme générative) et la simulation jouent un rôle majeur à cet égard.
- En octobre 2023, des chercheurs du MIT ont utilisé un modèle de diffusion, un type d'IA générative, pour gérer plus efficacement les problèmes d'emballage, notamment l'empilement des bagages, les collisions entre le pare-chocs de la voiture et le bras robotique et le placement d'objets plus lourds sur des produits plus légers. Un groupe de modèles d'apprentissage automatique, chacun formé pour représenter un certain type de contrainte, est utilisé dans leur méthodologie. En combinant ces modèles, des solutions globales prenant en compte simultanément toutes les contraintes sont produites pour le problème de packaging.
Principales tendances en matière de robots IA génératifs
Figure 3: Dernières tendances en matière de robots IA génératifs
- Robots autonomes : Les robots capables d’effectuer des tâches sans surveillance humaine continue sont appelés robots autonomes. Ces robots naviguent et prennent eux-mêmes des décisions à l’aide de capteurs et d’algorithmes. Ils deviennent de plus en plus importants dans divers secteurs, notamment l’industrie manufacturière et la logistique, car ils améliorent l’efficacité et la sécurité. Les robots autonomes sont capables de gérer des activités dangereuses ou répétitives afin que les individus puissent se concentrer sur des responsabilités plus complexes. Les véhicules automatisés et les drones ne sont que deux exemples de l’évolution de la robotique basée sur l’IA. Les avancées supplémentaires incluent des modèles de formation d'apprentissage automatique, la création de contenu, la génération d'images, la découverte de médicaments, les outils de génération de musique, la génération de code, les applications d'intelligence artificielle multimodales, les réseaux de publicité générative et plus encore.
- Double digitale: La technologie des jumeaux numériques est une tendance très intéressante dans le domaine de la robotique et de l’IA générative. Une réplique virtuelle ou une simulation d’un objet ou d’un système réel est appelée jumeau numérique. Il s’agit du processus de développement d’une contrepartie numérique dans le domaine de la robotique qui imite les caractéristiques, les interactions et le comportement d’un vrai robot. Le développement de jumeaux numériques sophistiqués nécessite l’utilisation d’une IA générative, qui simule dynamiquement des scénarios du monde réel et peut s’adapter à des environnements changeants. Cette technologie permet aux ingénieurs et aux développeurs d'optimiser et de dépanner numériquement les systèmes robotiques avant leur mise en œuvre, ce qui se traduit par des processus de conception plus efficaces, une réduction des coûts de développement et une amélioration des performances globales des dispositifs robotiques. La combinaison de l'IA générative et des jumeaux numériques révolutionne l'industrie de la robotique en améliorant la précision, l'adaptabilité et la fiabilité dans des applications variées.
- Développement en PNL : Les progrès de la PNL impliquent le renforcement de la compréhension des machines et de leur réponse au langage humain. Cette technologie affecte de nombreuses applications, telles que les chatbots, les assistants virtuels et les outils de traduction linguistique, en permettant une communication transparente entre les humains et les machines. De plus, le traitement amélioré du langage naturel (NLP) permet aux machines de comprendre le contexte, les sentiments et les nuances du langage, favorisant ainsi la coopération homme-machine. De plus, cette tendance améliore non seulement l’expérience utilisateur, mais fait également progresser la création de systèmes d’IA sophistiqués capables d’interpréter et de générer du texte ressemblant à celui d’un humain, nous rapprochant ainsi de la communication naturelle entre l’homme et la machine. En outre, les progrès dans le traitement du langage naturel (NLP) améliorent la capacité des ordinateurs à comprendre et à interagir avec le langage ou l’intelligence humaine, ce qui donne lieu à des systèmes basés sur l’IA plus intuitifs et plus conviviaux grâce à la création d’images réalistes.
- Discours synthétisé : Une tendance populaire dans la robotique générative de l’IA est la synthèse vocale, qui vise à fournir des voix réalistes et naturelles aux robots. Une technologie comme celle-ci permet aux machines d’interagir efficacement avec les personnes, améliorant ainsi l’expérience utilisateur et permettant l’interaction homme-robot. Des techniques avancées de traitement du langage naturel et d’apprentissage profond permettent aux robots de comprendre le langage parlé et de produire des réponses expressives et riches en intonations. En conséquence, les interactions deviennent plus intéressantes et plus pertinentes. Cette tendance a un large éventail d'applications, des robots personnalisés aux compagnons âgés, où une communication claire et expressive est essentielle pour établir des relations et de la confiance.
- Génération tridimensionnelle (3D) : Des progrès significatifs en matière d’IA sont réalisés dans le domaine de la génération 3D via la robotique. Cela implique d’utiliser l’intelligence artificielle pour créer des modèles ou des environnements virtuels tridimensionnels. Ces modèles peuvent être appliqués à un certain nombre de tâches, notamment la conception de structures complexes, l'amélioration des expériences de réalité virtuelle et la modélisation de scénarios réalistes pour la formation de systèmes robotiques. Des domaines avancés tels que la conception assistée par ordinateur, la simulation et le prototypage virtuel ont bénéficié du développement d'algorithmes génératifs, qui facilitent la création de matériaux 3D réalistes et complexes. Cette technologie contribue au développement et aux tests de systèmes robotiques dans un espace numérique plus réaliste et immersif en facilitant une meilleure compréhension et visualisation de données spatiales complexes.
Le marché mondial des robots autonomes a connu une croissance substantielle en raison de la demande croissante d’automatisation des entrepôts et de livraison rapide du dernier kilomètre. Selon l’analyse de Data Bridge Market Research, le marché mondial des robots autonomes devrait croître à un taux de croissance annuel composé (TCAC) de 19,70 % de 2022 à 2030.
Pour en savoir plus sur l’étude, visitez :https://www.databridgemarketresearch.com/fr/reports/global-autonomous-robot-market
Perspectives à venir des robots d’IA générative
Des opportunités passionnantes s’annoncent pour l’IA générative en robotique. Les développements et les percées dans ce domaine ouvrent la porte à des applications révolutionnaires dans toute une série d’industries.
- Effets possibles sur différents secteurs On s’attend à ce que l’IA générative dans les robots ait un impact significatif sur de nombreuses industries. Par exemple, l’IA générative dans le domaine de la santé peut aider à l’imagerie médicale en créant des images artificielles qui peuvent faciliter le diagnostic et la planification thérapeutique. Grâce à la création de solutions nouvelles et créatives, l’IA générative peut optimiser les opérations et la conception dans l’industrie manufacturière. L'IA générative peut être utilisée dans le divertissement pour produire des expériences interactives et personnalisées.
- Innovations et avancées technologiques : Le sujet de l’intelligence artificielle générative en robotique est en constante évolution en raison des études continues et des développements technologiques. Afin d’améliorer les capacités des modèles d’IA génératifs, les chercheurs étudient de nouvelles approches et méthodes. Les développements en matière d’apprentissage profond génératif, de réseaux contradictoires génératifs (GAN) et de modélisation générative en font partie.
Des modèles d’IA générative plus complexes et plus réalistes sont probablement en préparation suite à ces développements. Les robots seront ainsi capables de produire un travail plus complexe et plus imaginatif, ce qui augmentera leur efficacité et leur polyvalence. De plus, les algorithmes génératifs aideront les systèmes robotiques à devenir plus aptes à prendre des décisions et à résoudre des problèmes.
- Opportunités de collaboration entre différentes entreprises et organismes gouvernementaux : À mesure que l’IA générative en robotique se développe, le travail d’équipe sera essentiel pour favoriser la créativité et exploiter tout le potentiel de cette technologie. Les organisations peuvent entreprendre des tâches difficiles et repousser les limites de l’IA générative en collaborant avec des chercheurs et des experts en la matière. La collaboration peut également prendre la forme d’alliances intersectorielles, dans lesquelles des représentants de nombreux domaines se réunissent pour étudier les applications potentielles de l’IA générative en robotique. Cette approche interdisciplinaire, qui combine des connaissances de plusieurs domaines, peut stimuler l'innovation et les nouvelles idées.
L’IA générative mondiale sur le marché de la santé a connu une croissance significative ces dernières années en raison de plusieurs facteurs, tels que l’augmentation de la collaboration entre différentes entreprises, les progrès technologiques croissants, l’attention croissante portée à l’amélioration de l’imagerie médicale et bien d’autres encore. Selon l’analyse de Data Bridge Market Research, le marché mondial de l’IA générative dans le secteur de la santé devrait croître à un taux de croissance annuel composé (TCAC) de 32,60 % de 2023 à 2031.
Pour en savoir plus sur l’étude, visitez :https://www.databridgemarketresearch.com/fr/reports/global-generative-ai-in-healthcare-market
Vous trouverez ci-dessous quelques exemples liés aux opportunités à venir pour l’IA générative dans les robots :
- En mars 2024, Nvidia Corporation a développé une plate-forme matérielle et logicielle dotée de capacités d'IA générative pour créer des robots ressemblant à des humains. La nouvelle plate-forme comprendra un système informatique qui alimentera le robot et l'intelligence artificielle (IA), ainsi qu'une suite d'outils logiciels, tels que genAI, pour permettre la création de robots ressemblant à des humains. Les robots humanoïdes seront capables d'agir sur des entrées en utilisant une combinaison de langage, de vidéo, de « démonstrations humaines » et d'expériences antérieures grâce à l'incorporation de genAI.
- En mars 2024, Amazon Web Services (AWS) et Nvidia Corporation ont annoncé qu'AWS fournirait bientôt la nouvelle plate-forme GPU NVIDIA Blackwell, que NVIDIA a dévoilée lors du GTC 2024. Afin d'aider les clients à débloquer de nouvelles capacités d'intelligence artificielle (IA) générative, AWS va proposent désormais les GPU NVIDIA GB200 Grace Blackwell Superchip et B100 Tensor Core, élargissant ainsi leur collaboration stratégique de longue date. Ensemble, les entreprises fourniront l'infrastructure, les logiciels et les services les plus avancés et les plus sécurisés.
- En janvier 2024, Nvidia Corporation et ses partenaires Boston Dynamics, Sanctuary AI, Covariant, Unitree Robotics, Collaborative Robotics et d'autres ont présenté leurs partenariats et inventions les plus récents pour rapprocher l'IA générative et la robotique au CES 2024 à Las Vegas. Un certain nombre de technologies de pointe ont été présentées par sa liste de partenaires automobiles, démontrant le potentiel révolutionnaire de l'IA dans l'ingénierie, les performances et la conception des véhicules. L’industrie automobile connaît une adoption rapide de l’IA générative et de l’informatique définie par logiciel, qui alimentent des avancées qui devraient transformer complètement la conduite au cours de l’année à venir.
Conclusion
D’ici 2024, le domaine de la robotique à intelligence artificielle génétiquement modifiée aura considérablement progressé et révolutionnera les industries plus rapidement que par le passé. La robotique et l’intelligence artificielle combinées ont ouvert un large éventail d’opportunités, révolutionnant la vie quotidienne et l’industrie. Alors que nous parcourons le paysage en développement de la robotique générative. Il est prouvé que la coopération de l’intelligence artificielle et de la robotique crée un monde dans lequel les machines intelligentes coexistent avec les humains, offrant des solutions créatives et améliorant les expériences quotidiennes.