Marché espagnol de l’apprentissage automatique en tant que service – Tendances et prévisions du secteur jusqu’en 2029

Demande de table des matières Demande de table des matières Parler à un analysteParler à un analyste Acheter maintenantAcheter maintenant Renseignez-vous avant d'acheterRenseignez-vous avant Exemple de rapport gratuitExemple de rapport gratuit

Marché espagnol de l’apprentissage automatique en tant que service – Tendances et prévisions du secteur jusqu’en 2029

  • ICT
  • Upcoming Reports
  • Jun 2022
  • Country Level
  • 350 Pages
  • Nombre de tableaux : 220
  • Nombre de figures : 60

>Marché de l'apprentissage automatique en tant que service en Espagne, par service (service géré, professionnel, service professionnel), fonction commerciale (ressources humaines, ventes et marketing, finances et exploitation), modèle de déploiement (cloud, sur site), taille de l'organisation (grande organisation, petite et moyenne organisation), application (découverte de médicaments, détection de fraude et gestion des risques, traitement du langage naturel, marketing et publicité, sécurité et surveillance, reconnaissance d'images , analyse prédictive, exploration de données, réalité augmentée et virtuelle), utilisateur final (banque, services financiers et assurances, informatique et télécommunications, recherche et enseignement, gouvernement et secteur public, vente au détail et commerce électronique, fabrication, soins de santé et produits pharmaceutiques, voyages et logistique, énergie et services publics, médias et divertissement) - Tendances et prévisions de l'industrie jusqu'en 2029

Analyse et taille du marché

Les entreprises du marché de l'apprentissage automatique en tant que service se concentrent sur des secteurs clés tels que la technologie de la santé, le BFSI et les télécommunications pour identifier des flux de revenus stables après la pandémie de coronavirus. Cependant, les erreurs technologiques et le manque de professionnels expérimentés ayant une expérience de l'apprentissage automatique semblent être l'un des principaux facteurs limitant l'adoption de l'apprentissage automatique par les entreprises. Cela constitue également des obstacles à la mise en œuvre de plates-formes d'apprentissage automatique en tant que service. En outre, le manque de sécurité des données en raison du manque d'outils a un impact négatif sur la croissance du marché. Par conséquent, les acteurs du marché de l'apprentissage automatique en tant que service doivent coopérer avec les organismes gouvernementaux et restrictifs pour normaliser l'activité de l'apprentissage automatique en tant que service.

Data Bridge Market Research analyse que la valeur du marché de l'apprentissage automatique en tant que service, qui était de 5,45 milliards USD en 2021, devrait atteindre la valeur de 79,34 milliards USD d'ici 2029, à un TCAC de 39,76 % au cours de la période de prévision 2022-2029.

Définition du marché

L'apprentissage automatique est une technologie qui permet aux ordinateurs d'apprendre et de modifier des fonctionnalités fondamentales lorsqu'ils sont exposés à différents ensembles de données. L'apprentissage automatique est devenu l'outil le plus important pour les entreprises. Les géants de la technologie tels qu'Amazon et Google dépensent énormément d'argent pour augmenter et consolider leur clientèle.

Portée du rapport et segmentation du marché

Rapport métrique

Détails

Période de prévision

2022 à 2029

Année de base

2021

Années historiques

2020 (personnalisable de 2019 à 2014)

Unités quantitatives

Chiffre d'affaires en milliards USD, volumes en unités, prix en USD

Segments couverts

Service (service géré, professionnel, service professionnel), fonction commerciale (ressources humaines, ventes et marketing, finances et exploitation), modèle de déploiement (cloud, sur site), taille de l'organisation (grande organisation, petite et moyenne organisation), application (découverte de médicaments, détection de fraude et gestion des risques, traitement du langage naturel, marketing et publicité, sécurité et surveillance, reconnaissance d'images, analyse prédictive, exploration de données, réalité augmentée et virtuelle), utilisateur final (banque, services financiers et assurances, informatique et télécommunications, recherche et enseignement, gouvernement et secteur public, vente au détail et commerce électronique, fabrication, soins de santé et produits pharmaceutiques, voyages et logistique, énergie et services publics, médias et divertissement)

Acteurs du marché couverts

Google (États-Unis), Microsoft (États-Unis), IBM (États-Unis), SAP (Allemagne), Amazon Web Services, Inc. (États-Unis)

Opportunités de marché

  • Développer des options dans les domaines d'application
  • Croissance des investissements dans le secteur de la santé    
  • Amélioration de la connectivité et augmentation des données provenant des plateformes IoT

 Dynamique du marché espagnol de l'apprentissage automatique en tant que service

Cette section traite de la compréhension des moteurs, des avantages, des opportunités, des contraintes et des défis du marché. Tout cela est discuté en détail ci-dessous :

Conducteurs :

  • Progrès technologiques

Des progrès et des innovations rapides se produisent dans les technologies de reconnaissance faciale. De nombreux fournisseurs de solutions font beaucoup de travail dans ces domaines. Par exemple, Affectiva a récemment lancé sa technologie d'analyse des émotions qui possède le plus grand référentiel de données de plus de deux millions de vidéos de visages, permettant à ses clients d'atteindre une grande précision avec des informations inégalées. En dehors de cela, d'autres acteurs tels que les petits acteurs comme Cognitec System, Emotient, Gesturetek, Saffron et Palantir réalisent des avancées significatives dans le domaine de la reconnaissance des gestes, de la reconnaissance faciale, de l'informatique des caractéristiques mentales et de l'analyse des cellules somatiques. Ces développements devraient alimenter la croissance du marché dans les années à venir.

  • Stockage et archivage des données

Dans les algorithmes d'apprentissage profond, le package de stockage et d'archivage des informations joue un rôle important dans la prédiction des solutions aux problèmes extrêmement avancés. Étant donné qu'un programme algorithmique d'apprentissage profond traite un réseau neuronal synthétique composé de plusieurs couches, il a besoin d'une quantité démesurée d'ensembles de données pour fournir le résultat. Le programme algorithmique d'apprentissage profond utilise le package de stockage et d'archivage des informations pour se concentrer sur les fonctions avancées du réseau neuronal artificiel.

  • Modélisateur et traitement

Over the last decade, machine learning technologies have evolved into “algorithms” developed from numerous fields together with statistics, arithmetic, neurobiology, and computing, creating them commercially viable and computationally sturdy. several applications offered these days like speech recognition, fraud detection, and network improvement use a spread of machine learning techniques supported classification, regression, and estimation to method structured knowledge sets.

  • Cloud and Web-Based Application Programming Interface (APIS)

In machine learning rule, demand of information is a vital input parameter. A number of the business verticals like banking and monetary services would like an outsized quantity of information instantly to predict the market behavior. Machine learning algorithms get terribly less time to predict solutions when gathering information from information storage and archiving software package. To beat this quality, machine learning algorithms produce an interface between cloud and therefore the application platform.

Opportunities:

  • Increasing investments in the healthcare industry

In the field of medicine, huge information is deployed for computing difficult statistics in huge amounts thus on deliver trends and patterns that square measure crucial for applications within the attention business. Huge information aids physicians in anticipating issues before they occur. The Elsevier Health Analytics cluster has revolutionized patient care in FRG by deploying huge information. The corporate is closely coordinative with health economists, physicians, statisticians, IT specialists and analysts for growing the evidence-driven information on acceptable treatments. This is often managed by huge information in attention and befittingly employed by medical professionals with the assistance of AI. The preparation of huge information in attention has so increased the expansion of Germany’s marketplace for machine learning.

Restrictions/ challenges:

Lack of sure-handed labor to put in machine learning as a service market could be a key issue which will hamper growth of the world machine learning as a service market to an exact extent. In addition, businesses would like skilled services to customise specific functions to implement on their MLaaS platforms. Stringent compliance problems is another issue expected to restrain the target market.

Ce rapport sur le marché de l'apprentissage automatique en tant que service  fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l'analyse des importations et des exportations, l'analyse de la production, l'optimisation de la chaîne de valeur, la part de marché, l'impact des acteurs du marché national et local, les opportunités d'analyse en termes de poches de revenus émergentes, les changements dans la réglementation du marché, l'analyse stratégique de la croissance du marché, la taille du marché, la croissance du marché des catégories, les niches d'application et la domination, les approbations de produits, les lancements de produits, les expansions géographiques, les innovations technologiques sur le marché. Pour obtenir plus d'informations sur le  marché de l'apprentissage automatique en tant que service, contactez Data Bridge Market Research pour un briefing d'analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.

Impact du COVID-19 sur  le marché de l'apprentissage automatique en tant que service

La pandémie de COVID-19 a accéléré l'intérêt pour l'apprentissage automatique car le monde pratique les technologies de distanciation sociale. L'intégration de l'apprentissage automatique en tant que marché de services devrait être possible à travers chaque système logiciel et service en fonction du niveau et de la nature de l'intégration. L'utilisation de caméras thermiques et de systèmes d'identification de cluster est devenue courante dans les aéroports, les gares et différents lieux de visite publique. Cela a mis l'apprentissage automatique en tant que marché de services sous les projecteurs de la réflexion, ce qui devrait par la suite améliorer le marché cible. En outre, l'utilisation de l'IA pour reconnaître la présence de personnes dans des zones confinées dans des cliniques associées à des centres de soins COVID a un impact positif sur le marché mondial de l'apprentissage automatique en tant que service. Les calculs utilisés pour l'IA et la recherche ont été améliorés par une bonne poursuite, ce qui crée une opportunité dynamique pour les acteurs/fournisseurs opérationnels sur le marché de l'apprentissage automatique en tant que service.

 Portée du marché espagnol de l'apprentissage automatique en tant que service

Le marché de l'apprentissage automatique en tant que service  est segmenté sur la base du service, du modèle de déploiement des fonctions commerciales, de la taille de l'organisation, de l'application et de l'utilisateur final. La croissance parmi ces segments vous aidera à analyser les faibles segments de croissance dans les industries et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.

Service

  • Service géré
  • Professionnel
  • Service professionnel

 Fonction commerciale

  • Ressources humaines
  • Ventes et marketing
  • Finances et Opérations

 Modèle de déploiement

 Taille de l'organisation

  • Grande organisation
  • Petites et moyennes organisations

 Application

  • Découverte de médicaments
  • Détection de fraude et gestion des risques
  • Traitement du langage naturel
  • Marketing et publicité
  • Sécurité et surveillance
  • Reconnaissance d'images
  • Analyse prédictive
  • Exploration de données
  • Réalité augmentée et virtuelle

Utilisateur final

  • Services bancaires et financiers
  • Assurance
  • Informatique et Télécom
  • Recherche et enseignement
  • Gouvernement et secteur public
  • Commerce de détail et e-commerce
  • Fabrication
  • Santé et produits pharmaceutiques
  • Voyages et logistique
  • Énergie et services publics
  • Médias et divertissement

 Analyse du paysage concurrentiel et des parts de marché  de l'apprentissage automatique en tant que service

Le paysage concurrentiel du marché de l'apprentissage automatique en tant que service  fournit des détails par concurrent. Les détails inclus sont la présentation de l'entreprise, les finances de l'entreprise, les revenus générés, le potentiel du marché, les investissements dans la recherche et le développement, les nouvelles initiatives du marché, la présence mondiale, les sites et installations de production, les capacités de production, les forces et les faiblesses de l'entreprise, le lancement du produit, la largeur et l'étendue du produit, la domination des applications. Les points de données ci-dessus fournis ne concernent que l'orientation des entreprises liées au marché de l'apprentissage automatique en tant que service.

Certains des principaux acteurs opérant sur le marché de l'apprentissage automatique en tant que service sont :

  • Google (États-Unis),
  • Microsoft (États-Unis),
  • IBM (États-Unis),
  • SAP (Allemagne),
  • Amazon Web Services, Inc. (États-Unis)


SKU-

Accédez en ligne au rapport sur le premier cloud mondial de veille économique

  • Tableau de bord d'analyse de données interactif
  • Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
  • Accès d'analyste de recherche pour la personnalisation et les requêtes
  • Analyse de la concurrence avec tableau de bord interactif
  • Dernières actualités, mises à jour et analyse des tendances
  • Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Demande de démonstration

Table des matières

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 TECHNOLOGY LIFE LINE CURVE

2.5 MULTIVARIATE MODELLING

2.6 TOP TO BOTTOM ANALYSIS

2.7 STANDARDS OF MEASUREMENT

2.8 VENDOR SHARE ANALYSIS

2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.1 DATA POINTS FROM KEY SECONDARY DATABASES

2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT

2.12 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

6 PORTER’S FIVE FORCE MODEL

6.1 OVERVIEW

6.2 BARGAINING POWER OF BUYERS

6.3 BARGAINING POWER OF SUPPLIERS

6.4 THREAT OF NEW ENTRANTS

6.5 THREAT OF SUBSTITUTES

6.6 THREAT OF RIVALRY

7 INDUSTRY INSIGHTS

8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT

8.1 OVERVIEW

8.2 SOFTWARE

8.3 SERVICE

8.3.1 BY TYPE

8.3.2 PROFESSIONAL SERVICE

8.3.2.1. CONSULTING & TRAINING SERVICES

8.3.2.2. SUPPORT & MAINTENANCE SERVICES

8.3.2.3. IMPLEMENTATION SERVICES

8.3.3 MANAGED SERVICE

9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION

9.1 OVERVIEW

9.2 HUMAN RESOURCES

9.3 SALES AND MARKETING

9.4 FINANCE

9.5 OPERATION

10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL

10.1 OVERVIEW

10.2 CLOUD

10.3 ON-PREMISE

11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE

11.1 OVERVIEW

11.2 LARGE ORGANIZATION

11.2.1 BY DEPLOYMENT MODEL

11.2.1.1. CLOUD

11.2.1.2. ON-PREMISE

11.3 SMALL & MEDIUM ORGANIZATION

11.3.1 BY DEPLOYMENT MODEL

11.3.1.1. CLOUD

11.3.1.2. ON-PREMISE

12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION

12.1 OVERVIEW

12.2 DATA MINING

12.3 NATURAL LANGUAGE PROCESSING

12.4 IMAGE RECOGNITION

12.5 DRUG DISCOVERY

12.6 PREDICTIVE ANALYTICS

12.7 FRAUD DETECTION AND RISK MANAGEMENT

12.8 MARKETING AND ADVERTISING

12.9 AUGMENTED & VIRTUAL REALITY

12.1 SECURITY AND SURVEILLANCE

12.11 OTHERS

13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER

13.1 OVERVIEW

13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE

13.2.1 BY OFFERING

13.2.1.1. SOFTWARE

13.2.1.2. SERVICES

13.3 IT AND TELECOMMUNICATION

13.3.1 BY OFFERING

13.3.1.1. SOFTWARE

13.3.1.2. SERVICES

13.4 RESEARCH AND ACADEMIC

13.4.1 BY OFFERING

13.4.1.1. SOFTWARE

13.4.1.2. SERVICES

13.5 GOVERNMENT AND PUBLIC SECTOR

13.5.1 BY OFFERING

13.5.1.1. SOFTWARE

13.5.1.2. SERVICES

13.6 RETAIL & ECOMMERCE

13.6.1 BY OFFERING

13.6.1.1. SOFTWARE

13.6.1.2. SERVICES

13.7 MANUFACTURING

13.7.1 BY OFFERING

13.7.1.1. SOFTWARE

13.7.1.2. SERVICES

13.8 HEALTHCARE AND PHARMACEUTICALS

13.8.1 BY OFFERING

13.8.1.1. SOFTWARE

13.8.1.2. SERVICES

13.9 TRAVEL & LOGISTICS

13.9.1 BY OFFERING

13.9.1.1. SOFTWARE

13.9.1.2. SERVICES

13.1 ENERGY AND UTILITY

13.10.1 BY OFFERING

13.10.1.1. SOFTWARE

13.10.1.2. SERVICES

13.10.2 BY OFFERING

13.10.2.1. SOFTWARE

13.10.2.2. SERVICES

13.11 MEDIA AND ENTERTAINMENT

13.11.1 BY OFFERING

13.11.1.1. SOFTWARE

13.11.1.2. SERVICES

13.12 ACADEMIA AND RESEARCH

13.12.1 BY OFFERING

13.12.1.1. SOFTWARE

13.12.1.2. SERVICES

13.13 OTHERS

14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE

14.1 COMPANY SHARE ANALYSIS: SPAIN

14.2 MERGERS & ACQUISITIONS

14.3 NEW PRODUCT DEVELOPMENT & APPROVALS

14.4 EXPANSIONS

14.5 REGULATORY CHANGES

14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS

16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE

16.1 MICROSOFT

16.1.1 COMPANY SNAPSHOT

16.1.2 REVENUE ANALYSIS

16.1.3 GEOGRAPHIC PRESENCE

16.1.4 PRODUCT PORTFOLIO

16.1.5 RECENT DEVELOPMENTS

16.2 AMAZON WEB SERVICES, INC.

16.2.1 COMPANY SNAPSHOT

16.2.2 GEOGRAPHIC PRESENCE

16.2.3 PRODUCT PORTFOLIO

16.2.4 RECENT DEVELOPMENTS

16.3 GOOGLE,LLC

16.3.1 COMPANY SNAPSHOT

16.3.2 GEOGRAPHIC PRESENCE

16.3.3 REVENUE ANALYSIS

16.3.4 PRODUCT PORTFOLIO

16.3.5 RECENT DEVELOPMENTS

16.4 IBM

16.4.1 COMPANY SNAPSHOT

16.4.2 GEOGRAPHIC PRESENCE

16.4.3 REVENUE ANALYSIS

16.4.4 PRODUCT PORTFOLIO

16.4.5 RECENT DEVELOPMENTS

16.5 SAP SE

16.5.1 COMPANY SNAPSHOT

16.5.2 GEOGRAPHIC PRESENCE

16.5.3 PRODUCT PORTFOLIO

16.5.4 RECENT DEVELOPMENTS

16.6 BIGML

16.6.1 COMPANY SNAPSHOT

16.6.2 GEOGRAPHIC PRESENCE

16.6.3 PRODUCT PORTFOLIO

16.6.4 RECENT DEVELOPMENTS

16.7 ISHIR

16.7.1 COMPANY SNAPSHOT

16.7.2 GEOGRAPHIC PRESENCE

16.7.3 PRODUCT PORTFOLIO

16.7.4 RECENT DEVELOPMENTS

16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP

16.8.1 COMPANY SNAPSHOT

16.8.2 GEOGRAPHIC PRESENCE

16.8.3 PRODUCT PORTFOLIO

16.8.4 RECENT DEVELOPMENTS

16.9 SAS INSTITUTE INC.

16.9.1 COMPANY SNAPSHOT

16.9.2 GEOGRAPHIC PRESENCE

16.9.3 PRODUCT PORTFOLIO

16.9.4 RECENT DEVELOPMENTS

16.1 FICO

16.10.1 COMPANY SNAPSHOT

16.10.2 GEOGRAPHIC PRESENCE

16.10.3 PRODUCT PORTFOLIO

16.10.4 RECENT DEVELOPMENTS

17 QUESTIONNAIRE

18 CONCLUSION

19 RELATED REPORTS

20 ABOUT DATA BRIDGE MARKET RESEARCH

Méthodologie de recherche

La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.

Personnalisation disponible

Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Questions fréquemment posées

The market value for Spain Machine Learning as a Service Market is expected USD 79.34 billion by 2029.
The Spain Machine Learning as a Service Market is to grow at a CAGR of 39.76% during the forecast by 2029.
On the basis of application, the Spain Machine Learning as a Service Market is segmented into Drug Discovery, Fraud Detection and Risk Management, Natural Language Processing, Marketing and Advertising, Security and Surveillance, Image Recognition, Predictive Analytics, Data Mining, Augmented and Virtual Reality.
The major players operating in the Spain Machine Learning as a Service Market are Google (US), Microsoft (US), IBM (US), SAP (Germany), Amazon Web Services, Inc. (US).