>Marché de l'apprentissage automatique en tant que service en Espagne, par service (service géré, professionnel, service professionnel), fonction commerciale (ressources humaines, ventes et marketing, finances et exploitation), modèle de déploiement (cloud, sur site), taille de l'organisation (grande organisation, petite et moyenne organisation), application (découverte de médicaments, détection de fraude et gestion des risques, traitement du langage naturel, marketing et publicité, sécurité et surveillance, reconnaissance d'images , analyse prédictive, exploration de données, réalité augmentée et virtuelle), utilisateur final (banque, services financiers et assurances, informatique et télécommunications, recherche et enseignement, gouvernement et secteur public, vente au détail et commerce électronique, fabrication, soins de santé et produits pharmaceutiques, voyages et logistique, énergie et services publics, médias et divertissement) - Tendances et prévisions de l'industrie jusqu'en 2029
Analyse et taille du marché
Les entreprises du marché de l'apprentissage automatique en tant que service se concentrent sur des secteurs clés tels que la technologie de la santé, le BFSI et les télécommunications pour identifier des flux de revenus stables après la pandémie de coronavirus. Cependant, les erreurs technologiques et le manque de professionnels expérimentés ayant une expérience de l'apprentissage automatique semblent être l'un des principaux facteurs limitant l'adoption de l'apprentissage automatique par les entreprises. Cela constitue également des obstacles à la mise en œuvre de plates-formes d'apprentissage automatique en tant que service. En outre, le manque de sécurité des données en raison du manque d'outils a un impact négatif sur la croissance du marché. Par conséquent, les acteurs du marché de l'apprentissage automatique en tant que service doivent coopérer avec les organismes gouvernementaux et restrictifs pour normaliser l'activité de l'apprentissage automatique en tant que service.
Data Bridge Market Research analyse que la valeur du marché de l'apprentissage automatique en tant que service, qui était de 5,45 milliards USD en 2021, devrait atteindre la valeur de 79,34 milliards USD d'ici 2029, à un TCAC de 39,76 % au cours de la période de prévision 2022-2029.
Définition du marché
L'apprentissage automatique est une technologie qui permet aux ordinateurs d'apprendre et de modifier des fonctionnalités fondamentales lorsqu'ils sont exposés à différents ensembles de données. L'apprentissage automatique est devenu l'outil le plus important pour les entreprises. Les géants de la technologie tels qu'Amazon et Google dépensent énormément d'argent pour augmenter et consolider leur clientèle.
Portée du rapport et segmentation du marché
Rapport métrique |
Détails |
Période de prévision |
2022 à 2029 |
Année de base |
2021 |
Années historiques |
2020 (personnalisable de 2019 à 2014) |
Unités quantitatives |
Chiffre d'affaires en milliards USD, volumes en unités, prix en USD |
Segments couverts |
Service (service géré, professionnel, service professionnel), fonction commerciale (ressources humaines, ventes et marketing, finances et exploitation), modèle de déploiement (cloud, sur site), taille de l'organisation (grande organisation, petite et moyenne organisation), application (découverte de médicaments, détection de fraude et gestion des risques, traitement du langage naturel, marketing et publicité, sécurité et surveillance, reconnaissance d'images, analyse prédictive, exploration de données, réalité augmentée et virtuelle), utilisateur final (banque, services financiers et assurances, informatique et télécommunications, recherche et enseignement, gouvernement et secteur public, vente au détail et commerce électronique, fabrication, soins de santé et produits pharmaceutiques, voyages et logistique, énergie et services publics, médias et divertissement) |
Acteurs du marché couverts |
Google (États-Unis), Microsoft (États-Unis), IBM (États-Unis), SAP (Allemagne), Amazon Web Services, Inc. (États-Unis) |
Opportunités de marché |
|
Dynamique du marché espagnol de l'apprentissage automatique en tant que service
Cette section traite de la compréhension des moteurs, des avantages, des opportunités, des contraintes et des défis du marché. Tout cela est discuté en détail ci-dessous :
Conducteurs :
- Progrès technologiques
Des progrès et des innovations rapides se produisent dans les technologies de reconnaissance faciale. De nombreux fournisseurs de solutions font beaucoup de travail dans ces domaines. Par exemple, Affectiva a récemment lancé sa technologie d'analyse des émotions qui possède le plus grand référentiel de données de plus de deux millions de vidéos de visages, permettant à ses clients d'atteindre une grande précision avec des informations inégalées. En dehors de cela, d'autres acteurs tels que les petits acteurs comme Cognitec System, Emotient, Gesturetek, Saffron et Palantir réalisent des avancées significatives dans le domaine de la reconnaissance des gestes, de la reconnaissance faciale, de l'informatique des caractéristiques mentales et de l'analyse des cellules somatiques. Ces développements devraient alimenter la croissance du marché dans les années à venir.
- Stockage et archivage des données
Dans les algorithmes d'apprentissage profond, le package de stockage et d'archivage des informations joue un rôle important dans la prédiction des solutions aux problèmes extrêmement avancés. Étant donné qu'un programme algorithmique d'apprentissage profond traite un réseau neuronal synthétique composé de plusieurs couches, il a besoin d'une quantité démesurée d'ensembles de données pour fournir le résultat. Le programme algorithmique d'apprentissage profond utilise le package de stockage et d'archivage des informations pour se concentrer sur les fonctions avancées du réseau neuronal artificiel.
- Modélisateur et traitement
Over the last decade, machine learning technologies have evolved into “algorithms” developed from numerous fields together with statistics, arithmetic, neurobiology, and computing, creating them commercially viable and computationally sturdy. several applications offered these days like speech recognition, fraud detection, and network improvement use a spread of machine learning techniques supported classification, regression, and estimation to method structured knowledge sets.
- Cloud and Web-Based Application Programming Interface (APIS)
In machine learning rule, demand of information is a vital input parameter. A number of the business verticals like banking and monetary services would like an outsized quantity of information instantly to predict the market behavior. Machine learning algorithms get terribly less time to predict solutions when gathering information from information storage and archiving software package. To beat this quality, machine learning algorithms produce an interface between cloud and therefore the application platform.
Opportunities:
- Increasing investments in the healthcare industry
In the field of medicine, huge information is deployed for computing difficult statistics in huge amounts thus on deliver trends and patterns that square measure crucial for applications within the attention business. Huge information aids physicians in anticipating issues before they occur. The Elsevier Health Analytics cluster has revolutionized patient care in FRG by deploying huge information. The corporate is closely coordinative with health economists, physicians, statisticians, IT specialists and analysts for growing the evidence-driven information on acceptable treatments. This is often managed by huge information in attention and befittingly employed by medical professionals with the assistance of AI. The preparation of huge information in attention has so increased the expansion of Germany’s marketplace for machine learning.
Restrictions/ challenges:
Lack of sure-handed labor to put in machine learning as a service market could be a key issue which will hamper growth of the world machine learning as a service market to an exact extent. In addition, businesses would like skilled services to customise specific functions to implement on their MLaaS platforms. Stringent compliance problems is another issue expected to restrain the target market.
Ce rapport sur le marché de l'apprentissage automatique en tant que service fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l'analyse des importations et des exportations, l'analyse de la production, l'optimisation de la chaîne de valeur, la part de marché, l'impact des acteurs du marché national et local, les opportunités d'analyse en termes de poches de revenus émergentes, les changements dans la réglementation du marché, l'analyse stratégique de la croissance du marché, la taille du marché, la croissance du marché des catégories, les niches d'application et la domination, les approbations de produits, les lancements de produits, les expansions géographiques, les innovations technologiques sur le marché. Pour obtenir plus d'informations sur le marché de l'apprentissage automatique en tant que service, contactez Data Bridge Market Research pour un briefing d'analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.
Impact du COVID-19 sur le marché de l'apprentissage automatique en tant que service
La pandémie de COVID-19 a accéléré l'intérêt pour l'apprentissage automatique car le monde pratique les technologies de distanciation sociale. L'intégration de l'apprentissage automatique en tant que marché de services devrait être possible à travers chaque système logiciel et service en fonction du niveau et de la nature de l'intégration. L'utilisation de caméras thermiques et de systèmes d'identification de cluster est devenue courante dans les aéroports, les gares et différents lieux de visite publique. Cela a mis l'apprentissage automatique en tant que marché de services sous les projecteurs de la réflexion, ce qui devrait par la suite améliorer le marché cible. En outre, l'utilisation de l'IA pour reconnaître la présence de personnes dans des zones confinées dans des cliniques associées à des centres de soins COVID a un impact positif sur le marché mondial de l'apprentissage automatique en tant que service. Les calculs utilisés pour l'IA et la recherche ont été améliorés par une bonne poursuite, ce qui crée une opportunité dynamique pour les acteurs/fournisseurs opérationnels sur le marché de l'apprentissage automatique en tant que service.
Portée du marché espagnol de l'apprentissage automatique en tant que service
Le marché de l'apprentissage automatique en tant que service est segmenté sur la base du service, du modèle de déploiement des fonctions commerciales, de la taille de l'organisation, de l'application et de l'utilisateur final. La croissance parmi ces segments vous aidera à analyser les faibles segments de croissance dans les industries et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.
Service
- Service géré
- Professionnel
- Service professionnel
Fonction commerciale
- Ressources humaines
- Ventes et marketing
- Finances et Opérations
Modèle de déploiement
- Nuage
- Sur place
Taille de l'organisation
- Grande organisation
- Petites et moyennes organisations
Application
- Découverte de médicaments
- Détection de fraude et gestion des risques
- Traitement du langage naturel
- Marketing et publicité
- Sécurité et surveillance
- Reconnaissance d'images
- Analyse prédictive
- Exploration de données
- Réalité augmentée et virtuelle
Utilisateur final
- Services bancaires et financiers
- Assurance
- Informatique et Télécom
- Recherche et enseignement
- Gouvernement et secteur public
- Commerce de détail et e-commerce
- Fabrication
- Santé et produits pharmaceutiques
- Voyages et logistique
- Énergie et services publics
- Médias et divertissement
Analyse du paysage concurrentiel et des parts de marché de l'apprentissage automatique en tant que service
Le paysage concurrentiel du marché de l'apprentissage automatique en tant que service fournit des détails par concurrent. Les détails inclus sont la présentation de l'entreprise, les finances de l'entreprise, les revenus générés, le potentiel du marché, les investissements dans la recherche et le développement, les nouvelles initiatives du marché, la présence mondiale, les sites et installations de production, les capacités de production, les forces et les faiblesses de l'entreprise, le lancement du produit, la largeur et l'étendue du produit, la domination des applications. Les points de données ci-dessus fournis ne concernent que l'orientation des entreprises liées au marché de l'apprentissage automatique en tant que service.
Certains des principaux acteurs opérant sur le marché de l'apprentissage automatique en tant que service sont :
- Google (États-Unis),
- Microsoft (États-Unis),
- IBM (États-Unis),
- SAP (Allemagne),
- Amazon Web Services, Inc. (États-Unis)
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Table des matières
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.