North America Predictive Maintenance Market
Taille du marché en milliards USD
TCAC : %
Période de prévision |
2023 –2030 |
Taille du marché (année de référence) |
USD 3,923.85 Million |
Taille du marché (année de prévision) |
USD 60,608.62 Million |
TCAC |
|
Principaux acteurs du marché |
>Marché de la maintenance prédictive en Amérique du Nord, par composants (solutions, services), mode de déploiement (cloud, sur site), taille de l'organisation (grandes entreprises, petites et moyennes entreprises), vertical (fabrication, énergie et services publics, transport, gouvernement, soins de santé, aérospatiale et défense, autres), partie prenante (MRO, OEM/ODM, intégrateurs de technologies) - Tendances et prévisions de l'industrie jusqu'en 2030.
Analyse et taille du marché de la maintenance prédictive en Amérique du Nord
La technologie joue un rôle essentiel dans le développement de produits. Les progrès des systèmes de maintenance prédictive ouvrent au marché d'énormes opportunités pour analyser les performances et l'état de toute machine ou instrumentation. De plus, l'augmentation du temps de disponibilité, la réduction des coûts de maintenance, les stocks de pièces de rechange et les pannes inattendues ont permis au marché de prospérer simultanément. En outre, la diminution du temps de réparation et de révision est le principal facteur de croissance du marché de la maintenance prédictive.
Data Bridge Market Research analyse que le marché de la maintenance prédictive devrait atteindre 60 608,62 millions USD d'ici 2030, contre 3 923,85 millions USD en 2022, à un TCAC de 40,80 % au cours de la période de prévision. En plus des informations sur le marché telles que la valeur marchande, le taux de croissance, les segments de marché, la couverture géographique, les acteurs du marché et le scénario du marché, le rapport de marché élaboré par l'équipe Data Bridge Market Research comprend une analyse approfondie des experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse des pilon.
Portée et segmentation du marché de la maintenance prédictive en Amérique du Nord
Rapport métrique |
Détails |
Période de prévision |
2023 à 2030 |
Année de base |
2022 |
Années historiques |
2021 (personnalisable de 2015 à 2020) |
Unités quantitatives |
Chiffre d'affaires en millions USD, volumes en unités, prix en USD |
Segments couverts |
Composant (matériel, logiciel, services), type d'hyperviseur (VMware, machine virtuelle basée sur le noyau (KVM) et Hyper-V), taille de l'organisation (moyennes et petites entreprises et grandes entreprises), application (virtualisation des applications critiques, consolidation des centres de données, protection des données, cloud computing, infrastructure de bureau virtuel (VDI), succursale de bureau distant (ROBO)), mode de déploiement (cloud privé, cloud public et cloud hybride), utilisateur final (banque, services financiers et assurances (BFSI), informatique et télécommunications, gouvernement, soins de santé et sciences de la vie, vente au détail, électricité et énergie, fabrication, pétrole et gaz, exploitation minière, éducation, transport et logistique et médias et divertissement) |
Pays couverts |
États-Unis, Canada et Mexique en Amérique du Nord |
Acteurs du marché couverts |
Microsoft (U.S.), IBM (U.S.), SAP (Germany), SAS Institute Inc. (U.S.), Software AG (Germany), Cloud Software Group, Inc. (U.S.), Hewlett Packard Enterprise Development LP (U.S.), Altair Engineering Inc. (U.S.), Splunk Inc. (U.S.), Oracle (U.S.), Google (U.S.), Amazon Web Services, Inc. (U.S.), General Electric (U.S.), Schneider Electric (France), Hitachi, Ltd. (Japan), PTC (U.S.), RapidMiner (U.S), Operational Excellence (OPEX) Group Ltd, (U.K.), DINGO Software Pty. Ltd. (Australia), CHIRON Swiss SA (Russia) |
Market Opportunities |
|
Market Definition
A predictive maintenance software system is used to analyze the performance and condition of any machine or instrumentation whereas operational them. This software system observes the instrumentation victimization advanced procedures that allow the upkeep of the machinery to be even before any failure happens. The predictive maintenance software system has found its application in various fields, such as distinctive motor electrical phenomenon spikes, finding three-phase power imbalances from harmonic distortion, and heating from dangerous bearings.
North America Predictive Maintenance Market
Drivers
- Growing demand to reduce equipment failure, maintenance costs, and downtime
The increasing demand to decrease equipment failure, maintenance costs, and downtime considerably contributes to the predictive maintenance market growth. Equipment downtime is when specific equipment is not in operation because of unplanned equipment failure. Unplanned downtime and regular equipment failure of large equipment hinder business operations because of the temporary halt of production activities, financial penalties, idle staff time, and others. Hence, increasing demand to reduce equipment failure, maintenance costs, and downtime will likely increase demand for predictive maintenance in the forecast period.
- Increasing the number of industries globally to meet demand and supply
A growing number of medium and small-scale enterprises in the North American region globe is one of the major factors fostering the growth of the predictive maintenance market. In other words, the increased number of government and public sector, banking, financial services, and insurance (BFSI), healthcare and life sciences, retail and e-commerce, telecommunication, manufacturing, and IT industries directly influences the growth rate of the predictive maintenance market.
Opportunities
- Growing adoption of advanced technology
L'adoption de technologies avancées est une tendance majeure qui gagne en popularité sur le marché. Les principales entreprises opérant sur le marché de la maintenance prédictive se concentrent sur l'offre de solutions de maintenance prédictive technologiquement avancées pour renforcer leur position sur le marché. Ces entreprises utilisent des technologies de nouvelle génération dans leurs services, telles que l'IoT, l'intelligence artificielle , l'apprentissage automatique, le cloud computing, la thermographie et d'autres, pour répondre à la demande du marché pour une meilleure maintenance. La solution de maintenance prédictive utilise l'intelligence artificielle (IA) et des algorithmes d'apprentissage automatique pour soutenir l'évolution vers des réseaux zéro défaut et zéro contact en prévoyant et en prévenant de manière proactive les incidents sur le réseau.
- Demande croissante de maintenance prédictive dans le secteur de la santé
La demande croissante de maintenance prédictive dans le secteur de la santé au cours de la période de prévision créera des opportunités lucratives de croissance du marché. La maintenance prédictive des dispositifs biomédicaux tels que les respirateurs X, l'IRM, la tomographie et la mammographie est l'une des principales préoccupations dans l'augmentation des capacités de prise de décision dans les hôpitaux. Par exemple, Accruent, un fournisseur de services basé au Texas, fournit des solutions de maintenance prédictive pour les équipements de santé tels que les machines IRM et les respirateurs avec sa solution de gestion des actifs. En outre, Accruent est responsable de l'offre de solutions de gestion des actifs de santé à plus de 55 % des hôpitaux aux États-Unis
Restrictions
- Besoin élevé de maintenance et de mise à niveau régulières pour maintenir les systèmes à jour
Les entreprises adoptent des résultats IoT basés sur l'IA pour améliorer l'expérience client. Les marchands concernés doivent développer des systèmes de conservation avancés en tenant compte de deux facteurs importants : les mises à jour et la conservation des données. Les systèmes IoT basés sur l'IA doivent être maintenus et rationalisés en fonction de l'évolution des conditions commerciales pour appliquer les avancées technologiques. Le logiciel doit également être amélioré à mesure que de nouveaux facteurs sont ajoutés. Par conséquent, la maintenance et la mise à niveau des systèmes IoT basés sur l'IA seront un défi pour les entreprises qui fournissent des résultats sans interruption, ce qui entrave la croissance du marché.
- Main d'œuvre insuffisamment qualifiée
Les travailleurs formés doivent être capables de gérer les derniers systèmes logiciels pour utiliser les compétences IoT basées sur l'IA. Par conséquent, les travailleurs doivent être formés à l'exploitation des systèmes mis à niveau. De plus, la diligence est dynamique envers l'adoption de nouvelles technologies ; ils sont toujours confrontés à un nombre insuffisant de travailleurs largement qualifiés.
Ce rapport sur le marché de la maintenance prédictive fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l'analyse des importations et des exportations, l'analyse de la production, l'optimisation de la chaîne de valeur, la part de marché, l'impact des acteurs du marché national et local, les opportunités d'analyse en termes de poches de revenus émergentes, les changements dans les réglementations du marché, l'analyse stratégique de la croissance du marché, la taille du marché, la croissance du marché des catégories, les niches d'application et la domination, les approbations de produits, les lancements de produits, les expansions géographiques, les innovations technologiques sur le marché. Pour obtenir plus d'informations sur le marché de la maintenance prédictive, contactez Data Bridge Market Research pour un briefing d'analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.
Développements récents
- En 2022, Siemens, une entreprise technologique basée en Allemagne et spécialisée dans les transports, la santé, l'industrie et les infrastructures, a acquis Senseye pour un montant non divulgué. Avec cette acquisition, Senseye est devenue une filiale de Siemens et devrait renforcer sa position dans le portefeuille de services numériques.
Portée du marché de la maintenance prédictive en Amérique du Nord
Le marché de la maintenance prédictive est segmenté en fonction des composants, du mode de déploiement, de la taille de l'organisation, du secteur vertical et des parties prenantes. La croissance parmi ces segments vous aidera à analyser les segments de faible croissance dans les industries et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.
Composant
- Solutions
- Intégré
- Autonome
- Service
- Services gérés
- Services professionnels
- Intégration de systèmes
- Assistance et maintenance
- Consultant
Intégration de systèmes
- Assistance et maintenance
- Consultant
Mode de déploiement
- Sur site
- Nuage
- Cloud public
- Cloud privé
- Cloud hybride
Taille de l'organisation
- Grandes entreprises
- Petites et moyennes entreprises (PME)
Verticale
- Gouvernement et défense
- Fabrication
- Énergie et services publics
- Transport et logistique
- Santé et sciences de la vie
Partie prenante
- MRO
- Fabricant d'équipement d'origine (FEO) et d'ODM (ODM)
- Intégrateurs de technologie
Analyse/perspectives régionales du marché de la maintenance prédictive
Le marché de la maintenance prédictive est analysé et des informations sur la taille et les tendances du marché sont fournies par pays, composants, mode de déploiement, taille de l'organisation, vertical et partie prenante, comme référencé ci-dessus.
Les pays couverts dans le rapport sur le marché de la maintenance prédictive sont les États-Unis, le Canada et le Mexique en Amérique du Nord,
Les États-Unis dominent le marché de la maintenance prédictive en raison des investissements croissants dans les technologies émergentes telles que l'apprentissage automatique, l'IoT et l'intelligence artificielle, qui améliorent les segments de solutions et de services de cette région. En outre, l'adoption croissante de la maintenance prédictive par les secteurs bancaire et informatique et des télécommunications va encore développer le marché de cette région.
La section pays du rapport fournit également des facteurs d'impact sur les marchés individuels et des changements dans la réglementation du marché qui ont un impact sur les tendances actuelles et futures du marché. Des points de données tels que l'analyse de la chaîne de valeur en aval et en amont, les tendances techniques et l'analyse des cinq forces du porteur, les études de cas sont quelques-uns des indicateurs utilisés pour prévoir le scénario de marché pour les différents pays. En outre, la présence et la disponibilité des marques mondiales et les défis auxquels elles sont confrontées en raison de la concurrence importante ou rare des marques locales et nationales, l'impact des tarifs nationaux et les routes commerciales sont pris en compte tout en fournissant une analyse prévisionnelle des données nationales.
Analyse du paysage concurrentiel et des parts de marché de la maintenance prédictive
Le paysage concurrentiel du marché de la maintenance prédictive fournit des détails par concurrent. Les détails inclus sont la présentation de l'entreprise, les finances de l'entreprise, les revenus générés, le potentiel du marché, les investissements dans la recherche et le développement, les nouvelles initiatives du marché, la présence mondiale, les sites et installations de production, les capacités de production, les forces et les faiblesses de l'entreprise, le lancement du produit, la largeur et l'étendue du produit, la domination des applications. Les points de données ci-dessus fournis ne concernent que l'orientation des entreprises liée au marché de la maintenance prédictive.
Certains des principaux acteurs opérant sur le marché de la maintenance prédictive sont :
- Microsoft (États-Unis)
- IBM (États-Unis)
- SAP (Allemagne)
- SAS Institute Inc. (États-Unis)
- Software AG (Allemagne)
- Cloud Software Group, Inc. (États-Unis)
- Hewlett Packard Enterprise Development LP (États-Unis)
- Altair Engineering Inc. (États-Unis)
- Splunk Inc. (États-Unis)
- Oracle (États-Unis)
- Google (États-Unis)
- Amazon Web Services, Inc. (États-Unis)
- General Electric (États-Unis)
- Schneider Electric (France)
- Hitachi, Ltd. (Japon)
- PTC (États-Unis)
- RapidMiner (États-Unis)
- Groupe Excellence Opérationnelle (OPEX) Ltd, (Royaume-Uni)
- DINGO Software Pty. Ltd. (Australie)
- CHIRON Swiss SA (Russie)
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.