Aperçu et prévisions du marché mondial du traitement du langage naturel (NLP) et des sciences de la vie dans le secteur de la santé jusqu'en 2031 - Analyse du marché et part de marché

Demande de table des matières Demande de table des matières Parler à un analysteParler à un analyste Acheter maintenantAcheter maintenant Renseignez-vous avant d'acheterRenseignez-vous avant Exemple de rapport gratuitExemple de rapport gratuit

Aperçu et prévisions du marché mondial du traitement du langage naturel (NLP) et des sciences de la vie dans le secteur de la santé jusqu'en 2031 - Analyse du marché et part de marché

  • ICT
  • Upcoming Reports
  • Aug 2024
  • Global
  • 350 Pages
  • Nombre de tableaux : 60
  • Nombre de figures : 220

Global Natural Language Processing Nlp Healthcare Life Sciences Market

Taille du marché en milliards USD

TCAC :  % Diagram

Diagram Période de prévision
2024 –2031
Diagram Taille du marché (année de référence)
USD 2.11 Billion
Diagram Taille du marché (année de prévision)
USD 8.48 Billion
Diagram TCAC
%
Diagram Principaux acteurs du marché
  • 3M (U.S.)
  • Cerner Corporation (U.S.)
  • Nuance Communications Inc. (U.S.)
  • Dolby Systems Inc. (U.S.)
  • Microsoft (U.S.)

>Le marché mondial du traitement du langage naturel (NLP) dans le domaine des soins de santé et des sciences de la vie était évalué à 2,11 milliards USD en 2023. La taille du marché devrait croître à un TCAC de 19 % et atteindre 8,48 milliards USD d'ici 2031.

Traitement du langage naturel (NLP) sur le marché de la santé et des sciences de la vie

Marché mondial du traitement du langage naturel (NLP) et des sciences de la vie dans le secteur de la santé – Aperçu de l’industrie

Le secteur de la santé et des sciences de la vie produit une quantité énorme de données, notamment des dossiers médicaux électroniques, des rapports d'essais cliniques, des données de recherche et des rapports de patients. Selon le Forum économique mondial, le secteur de la santé génère plus de 30 % des données générées dans le monde entier, dont la plupart ne sont pas utilisées. L'intégration du traitement du langage naturel (NLP) dans le secteur de la santé joue un rôle énorme dans le traitement des données médicales conduisant à l'innovation et aux inventions qui peuvent potentiellement devenir la base de la découverte de traitements et de thérapies, de médicaments et de médicaments qui peuvent s'avérer être un remède efficace pour divers problèmes de santé. Le NLP a complètement transformé le secteur de la santé et des sciences de la vie grâce à son approche globale orientée vers l'analyse des données. Désormais, il n'y a plus aucun dossier de santé et de sciences de la vie qui ne soit inutilisé grâce à l'analyse dynamique des données non structurées, à l'analyse des sentiments, à la reconnaissance des entités nommées et à la découverte de médicaments du NLP pour extraire des informations précieuses qui contribuent à améliorer considérablement l'engagement des patients et, par conséquent, le marché mondial des sciences de la vie et de la santé du NLP est en pleine expansion.  

Le rapport d'étude de marché de Data Bridge Market Research fournit des détails sur les développements récents, les réglementations commerciales, la part de marché, les tendances du marché sur la base de ses segmentations et de son analyse régionale, l'impact des acteurs du marché, l'analyse des opportunités en termes de poches de revenus émergentes, les réglementations du marché, l'analyse stratégique de la croissance du marché, la taille du marché, la croissance du marché par catégorie, les niches d'application et la domination, les approbations de produits, les lancements de produits, les expansions géographiques et les innovations technologiques du marché. Pour obtenir plus d'informations sur le marché, contactez l'équipe d'analystes experts de Data Bridge Market Research. Notre équipe vous aidera à prendre des décisions de marché éclairées pour assurer la croissance de votre entreprise.

Taille du marché mondial du traitement du langage naturel (NLP) et des sciences de la vie dans le domaine de la santé

Détails des mesures du rapport sur le marché des sciences de la vie dans le secteur de la santé NLP

Période de prévision

2024-2031

Année de base

2023

Année historique

2022 (Personnalisable 2016-2021)

Unité de mesure

Milliards de dollars américains

Pointeur de données

informations sur le marché : valeur marchande, taux de croissance, segments de marché, couverture géographique, acteurs du marché et scénario de marché, analyse approfondie par des experts, épidémiologie des patients, analyse du pipeline, analyse des prix et cadre réglementaire.

La convergence du PNL et des soins de santé et des sciences de la vie a fait évoluer la médecine en utilisant les données au profit du secteur. La croissance exponentielle des données de soins de santé accélère le besoin de solutions PNL qui peuvent aider à gérer cette mer de données non structurées pour extraire des informations précieuses. Les innovations en cours dans l'IA et l'apprentissage automatique contribuent à développer les capacités et la précision des applications PNL, ce qui encourage encore davantage l'adoption des technologies PNL pour renforcer la recherche et le développement dans le domaine des soins de santé. L'interconnexion du PNL et des soins de santé est une aubaine pour les prestataires de services de santé qui harmonisent les soins aux patients et les services de santé pour assurer la croissance du marché. Databridge Market Research a plongé dans une analyse approfondie du marché et a dévoilé que les marchés mondiaux du traitement du langage naturel PNL des soins de santé et des sciences de la vie augmentent à un TCAC de 3,64 %. La taille du marché est évaluée à 2,11 milliards USD en 2023 et devrait atteindre 8,48 milliards USD d'ici 2031.

Dynamique du marché des sciences de la vie et de la santé en PNL

Moteurs de croissance du marché des sciences de la vie et de la santé NLP

Organisation des dossiers médicaux électroniques (DME) pour une analyse plus approfondie     

Les dossiers médicaux électroniques (DME) utilisés par les établissements de santé génèrent une multitude de données relatives aux patients qui deviennent difficiles à structurer, à stocker et à analyser. Ces dossiers électroniques comprennent généralement des rapports médicaux, des antécédents médicaux et d'autres types de données. Non seulement l'organisation et l'examen de ces données sont importants, mais il est tout aussi important d'y accéder facilement. Les technologies de PNL qui incluent la documentation clinique, la reconnaissance vocale, la recherche d'exploration de données et l'aide à la décision clinique sont très productives dans l'extraction et l'examen des données médicales et dans la garantie de leur disponibilité en fonction de l'utilisation. En tirant parti du PNL, les prestataires de soins de santé peuvent analyser et interpréter plus efficacement cette vaste gamme de données, ce qui conduit à une meilleure prise de décision clinique, à des soins personnalisés aux patients et à une plus grande efficacité opérationnelle, alimentant ainsi la croissance du marché.

Analyse prédictive basée sur l'intelligence artificielle (IA) et l'apprentissage automatique (ML)

NLP being a sub-division of artificial intelligence in equipped with statistic and analytical models that have a part to play in identifying trends and patterns. When NLP in healthcare is fed with complex data, it structures it to perform comprehensive analysis on patients’ records. In other terms, it runs predictive analysis on the patient related data which bring forth the current health conditions and the level of effect on the body as well as helps foresee ailments and diseases a patient is vulnerable to. These technologies allow extracting useful insights, identifying patterns, and outcome forecasting from very large data sets for more informed clinical decisions and better patient outcomes. The conclusion of this predictive analysis is improved patient care and advanced prevention measures to prevent predicted health condition. Predictive analysis through NLP is a major contributor to enhancing patient care services and furthering the market growth.

Automating Patient Records and Documentation Reduces Healthcare Cost

Automated clinical documentation, powered by Natural Language Processing (NLP), streamlines management of patient records by converting spoken or written information into structured, actionable data. This automation reduces the burden on healthcare professionals, minimizes manual entry errors, and ensures that patient information is accurately and comprehensively recorded. This automation technology is a cost-effective way, making it easier for healthcare professionals to spend more time on patient care rather than administration, leading to improved accuracy and therefore, general efficiency in keeping medical records.  With these menial tasks becoming automated, healthcare professionals are enjoying cost efficiency while enhancing overall quality of patient care. Automation also enables unification of health records by collating the entire patient record stored on the database of other doctors or healthcare centers. Healthcare turning cost-effective due to NLP is a stimulus for the growth Global NLP Healthcare Life Sciences.   

NLP Healthcare Life Science Market Growth Opportunities

Customized Treatment Plan

NLP plays a key role in preparing an individualized and focused treatment plan. NLP’s ability to extract and unify patients’ data from various sources like electronic health records, clinical notes, and medical histories, which enables easy processing and identification of particular needs of patients, genetic factors, and health conditions. This helps healthcare providers prepare a treatment plan to suit patients’ needs. Devising a personalized treatment plan is an opportunity for doctors to create the most effective course of treatment of their patients and thereby, expand their patient base. For instance, NLP can highlight the patterns in patient history so that one could determine the drugs most likely to be effective or even identify possible side effects in a case similar to others. As such, NLP is supportive of precision medicine, where interventions will be more focused and more effective, hence improving treatment efficiency and patient outcome.

Integrating IOT in Wearables

Wearables incorporated with NLP powered by IoT enables capturing of real-time patient data. It helps monitor patients’ health remotely all throughout the day and allows healthcare professionals to record any complications and variations so that they can act immediately to prepare an action plan to prevent any such complexity in future.

Collaboration with Pharmaceutical and Biotech Companies    

Collaborating with pharmaceutical and biotechnology companies to integrate Natural Language Processing (NLP) into drug discovery, clinical trials management, and pharmacovigilance processes drives efficiency and accelerates innovation in life sciences. NLP enhances the efficiency of clinical trials by automating data extraction from medical records and patient reports, facilitating faster recruitment and analysis of trial data. 

NLP Healthcare Life Science Market Size Growth Challenges

NLP in healthcare and health sciences are usually fed with specific group of terms that might not apply to any other command. Since human language keeps on evolving, the predefined group of terms might inaccurately structure the data. This usually happens when an NLP program has a built-in group of terms which might not match the unstructured data being examined. This challenge is easy to overcome with a certain level of human involvement.

NLP is capable of organizing and categorizing unstructured data. However, the tool can turn less-efficient faced by the complexity of human language. It might not be able to cope up with complicated language, dialect, and reference points. This, as a result, raises the chances of false positives and negatives.  

NLP Healthcare Life Science Market Size Growth Restraints

Data Privacy and security concerns

In the application of NLP solutions, processing of sensitive patient information will give rise to drastic concerns about privacy laws and data security breaches. While healthcare providers are already exploring every opportunity to implement NLP technologies to the fullest, they will have to wade through rigid data protection laws under HIPAA in the US and the GDPR in Europe—both enacted for the purpose of maintaining the confidentiality of patients and stemming possible unauthorized access to personal health information. To accomplish all this, NLP systems should be fully security enabled. It should be guaranteed that this requirement is met by the application of robust methods for the encryption of data at rest and in transit, very strict access controls that limit access of data to only authorized users, and anonymization techniques to help guard against undesired exposure of the patient's identity. Aggregation of these security protocols can guarantee

Integration Complexity of NLP Systems  

Integrating natural language processing (NLP) systems with existing healthcare IT infrastructure, including EHRs and clinical systems, can be complex and time-consuming. Healthcare organizations face challenges such as interoperability issues, data standardization, and compatibility with legacy systems when deploying NLP solutions. The integration process requires careful planning, customization, and coordination with IT teams to ensure seamless connectivity and functionality across different platforms. Moreover, training healthcare staff to effectively utilize NLP tools and interpret the insights generated poses additional implementation challenges.

NLP Healthcare Life Science Market Scope and Trends

NLP Healthcare Life Science Market Segmentations Overview

Segments Type

Sub-Segments

Component

Standalone Solutions and Services

NLP Type

Rule-Based NLP, Statistical NLP, Hybrid NLP

Deployment Mode

On-Premises, Cloud

Organization Size

Large Enterprises, Small and Medium Enterprises

Application

Interactive Voice Response (IVR), Pattern and Image Recognition, Auto Coding, Classification and Categorization, Text and Speech Analytics, Others

End-User

NLP for Physicians, NLP for Researchers, NLP for Patients, NLP for Clinical Operators

 Key Insight

  • In the recent years, with the emergence of AI potential as a game changer in healthcare, by employing machine learning and NLP techniques to the effective processing of growing volumes of data boosts one of the most impressive applications known as automated clinical coding that streamlines the administration and management of clinical records in a hospital and medical research setting.
  • There has been a surge of articles for automated clinical coding with deep learning (as the current mainstream approach of AI) in the last few years, as reviewed in recent surveys.
  • Though the concerns are addressed and safety and efficacy of chat bots are pointed out, human aspects of healthcare cannot be replaced. In this way, chat bots can only become an integral part of the clinical practice to work in tandem with healthcare professionals, decreasing cost, enhancing workflow efficiencies, and thus improvising on outcomes for better results.

NLP Healthcare Life Science Market Regional Analysis – Market Trends

NLP Healthcare Life Science Market Regional Overview

Regions

Countries

Europe

Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe

APAC

China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific

North America

U.S., Canada, and Mexico

MEA

Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East, and Africa

South America

Brazil, Argentina, and Rest of South America

Key Insights

  • North America is expected to dominate the market due to increasing demand for NLP solutions and substantial investments in robotics and NLP-related research and development initiatives. The region's advanced healthcare infrastructure and strong presence of key technology giants facilitate the rapid adoption of NLP technologies across various applications, including clinical documentation, patient interaction analysis, and data analytics. 
  • Asia-Pacific is expected to witness significant growth due to widespread adoption of advanced technologies aimed at optimizing business operations. Increasing investments in healthcare IT infrastructure and rising awareness about the benefits of NLP in improving clinical decision-making processes and patient engagement are key factors driving this growth.
  • The Netherlands Organization for Scientific Research (NWO) is involved with projects applying NLP for the analysis of scientific data obtained from biomedical research studies. The goal is to develop new treatments and improve understanding of disease biology.
  • The European Union-funded European Health Data Space (EHDS) project is focused on developing NLP tools capable of handling multiple European languages. The initiative aims to create standardized NLP solutions that can process health data across various languages and dialects throughout Europe.
  • NHS Digital in the UK is focusing on integrating NLP technologies into EHR systems to enhance clinical documentation and information retrieval. Such integration tries to achieve an enhanced level of data accuracy for patients, which in another sense will allow for the proper conduction of right clinical decisions due to the fact that it automates data extraction and analysis processes from medical recording.
  • In South Africa, Data Science Africa develops NLP models that are built to support a number of local languages, from Afrikaans and Zulu to others, to be placed in a position to meet multilingual requirements within a regionally based healthcare system.

Principaux acteurs du marché des sciences de la vie et de la santé en PNL

  • 3M (États-Unis)
  • Cerner Corporation (États-Unis)
  • Nuance Communications Inc. (États-Unis)
  • Dolby Systems Inc. (États-Unis)
  • Microsoft (États-Unis)
  • IBM (États-Unis)
  • Google LLC (Alphabet Inc.) (États-Unis)
  • Amazon Web Services Inc. (États-Unis)
  • Apixio Inc. (États-Unis)
  • Averbis (Allemagne)
  • Clinithink (États-Unis)
  • Lexalytics (États-Unis)
  • Science narrative (États-Unis)
  • Laboratoires JohnSnow (États-Unis)
  • BenevolentAI (Royaume-Uni)

Développements récents du marché des sciences de la vie et de la santé en PNL

  • En février 2024, Persistent Systems a collaboré avec Microsoft pour lancer une nouvelle solution PHM basée sur l'IA générative. Développée pour soutenir les modèles de soins basés sur la valeur, cette solution avancée utilise les DSS pour mesurer les besoins non cliniques des patients. En conséquence, elle renforce la précision des analyses prédictives des dépenses de santé pour plusieurs pathologies cliniques.
  • En juin 2023, Apixio, leader des solutions d’intelligence artificielle pour les soins de santé basés sur la valeur, a finalisé sa fusion avec ClaimLogiq, une société technologique connue pour son expertise dans l’amélioration de la précision des demandes de remboursement préalables pour les régimes d’assurance maladie. La nouvelle entité combinée portera le nom d’Apixio et deviendra immédiatement l’un des acteurs les plus importants et les plus dominants dans le domaine des données et de l’analyse des soins de santé. La fusion stratégique réunit l’IA avancée d’Apixio avec la précision de ClaimLogiq dans le traitement des demandes, créant ainsi une plateforme puissante pour la fourniture d’informations et de solutions complètes. Le nouvel Apixio cherche à révolutionner la gestion des soins de santé en améliorant la précision des données, en apportant une optimisation des prévisions de coûts et en favorisant des stratégies de soins basées sur la valeur plus efficaces – une nouvelle norme dans le secteur de l’analyse des soins de santé.

Le rapport de marché de DBMR sur le marché du traitement du langage naturel (NLP) et des sciences de la vie dans le secteur de la santé vous présente des informations précieuses qui peuvent contribuer à la prise de plusieurs décisions commerciales importantes. Sur la base de nos rapports et de notre expertise en recherche, vous pouvez créer des stratégies de croissance réalistes pour votre entreprise.   


SKU-

Accédez en ligne au rapport sur le premier cloud mondial de veille économique

  • Tableau de bord d'analyse de données interactif
  • Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
  • Accès d'analyste de recherche pour la personnalisation et les requêtes
  • Analyse de la concurrence avec tableau de bord interactif
  • Dernières actualités, mises à jour et analyse des tendances
  • Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Demande de démonstration

Méthodologie de recherche

La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.

Personnalisation disponible

Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Questions fréquemment posées

The Global Natural Language Processing NLP Healthcare Life Sciences Markets growing at a CAGR 3.64% and is expected to reach 2.51 in 2024.
The Global Natural Language Processing NLP Healthcare Life Sciences Markets growing CAGR of 3.64% to reach USD 8.48 billion by 2031.
Key drivers Adoption of Electronic Health Records (EHRs) & Advancements in Artificial Intelligence (AI) and Machine Learning (ML)
APAC, particularly countries like China and India, is experiencing significant industrial growth and urbanization.
Our TRIPOD analysis involves comprehensive primary as well as secondary research to gather the data that is analyzed using credible data analysis methodologies involving Data Forecast Modelling, Porter’s Five Force Model, Demand Supply Chain Analysis, and Value Change Analysis.