Global MLOPs Market – Industry Trends and Forecast to 2031

Demande de table des matières Demande de table des matières Parler à un analysteParler à un analyste Acheter maintenantAcheter maintenant Renseignez-vous avant d'acheterRenseignez-vous avant Exemple de rapport gratuitExemple de rapport gratuit

Global MLOPs Market – Industry Trends and Forecast to 2031

  • ICT
  • Upcoming Reports
  • Apr 2024
  • Global
  • 350 Pages
  • Nombre de tableaux : 220
  • Nombre de figures : 60

Global Mlops Market

Taille du marché en milliards USD

TCAC :  % Diagram

Diagram Période de prévision
2024 –2031
Diagram Taille du marché (année de référence)
USD 7.62 Billion
Diagram Taille du marché (année de prévision)
USD 11.69 Billion
Diagram TCAC
%
DiagramPrincipaux acteurs du marché
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5 < /li>

>Marché mondial des MLOP, par composant (plateforme, service), mode de déploiement (sur site, cloud, hybride), taille de l'organisation (grandes entreprises, petites et moyennes entreprises (PME)), secteurs d'activité (services financiers (BFSI), fabrication, technologies de l'information (IT) et télécommunications, vente au détail et commerce électronique , soins de santé, autres) - Tendances et prévisions de l'industrie jusqu'en 2031.

Analyse et taille du marché des MLOP

Les opérations d'apprentissage automatique (MLOps) font référence à l'ensemble des pratiques et des outils utilisés pour rationaliser et automatiser le déploiement, la surveillance et la gestion des modèles d'apprentissage automatique dans les environnements de production. Les MLOps visent à combler le fossé entre le développement et le déploiement des modèles d'apprentissage automatique en garantissant la cohérence, la fiabilité et l'évolutivité tout au long du cycle de vie de l'apprentissage automatique.

Français Data Bridge Market Research analyse que le marché mondial des MLOP, qui était de 7,62 milliards USD en 2023, devrait atteindre 11,69 milliards USD d'ici 2031 et devrait connaître un TCAC de 5,5 % au cours de la période de prévision de 2024 à 2031. En plus des informations sur le marché telles que la valeur du marché, le taux de croissance, les segments de marché, la couverture géographique, les acteurs du marché et le scénario du marché, le rapport de marché organisé par l'équipe de recherche sur le marché de Data Bridge comprend une analyse approfondie des experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse du pilon.

Portée du rapport et segmentation du marché

Rapport métrique

Détails

Période de prévision

2024 à 2031

Année de base

2023

Années historiques

2022 (personnalisé 2016 à 2021)

Unités quantitatives

Chiffre d'affaires en milliards USD, volumes en unités, prix en USD

Segments couverts

Composant (plateforme, service), mode de déploiement (sur site, cloud, hybride), taille de l'organisation (grandes entreprises, petites et moyennes entreprises (PME)), secteurs d'activité (services financiers (BFSI), fabrication, technologies de l'information (IT) et télécommunications, vente au détail et commerce électronique, soins de santé, autres)

Pays couverts

États-Unis, Canada, Mexique, Brésil, Argentine, Reste de l'Amérique du Sud, Allemagne, Italie, Royaume-Uni, France, Espagne, Pays-Bas, Belgique, Suisse, Turquie, Russie, Reste de l'Europe, Japon, Chine, Inde, Corée du Sud, Australie, Singapour, Malaisie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique, Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël, Reste du Moyen-Orient et de l'Afrique

Acteurs du marché couverts

Databricks (États-Unis), Domino Data Lab (États-Unis), Kubeflow (par Google) (États-Unis), Amazon SageMaker (États-Unis), Paperspace Gradient (États-Unis), Fiddler AI (États-Unis), MLflow (par Databricks) (États-Unis), Valohai (Finlande), Pachyderm (États-Unis), ZenML (Allemagne)

Opportunités de marché

  • Demande croissante en matière d'IA et d'apprentissage automatique
  • L'accent croissant mis sur la démocratisation des MLOps

Définition du marché

MLOps englobe une gamme de solutions et de services qui rationalisent l'ensemble du cycle de vie de l'apprentissage automatique, du développement et de la formation des modèles au déploiement, à la surveillance et à la gestion. Ces outils MLOps comblent le fossé entre la science des données et la production, garantissant des flux de travail efficaces, des performances de modèle optimisées et une intégration fluide des modèles d'apprentissage automatique dans des applications concrètes dans divers secteurs.

Dynamique du marché des MLOP

Conducteurs

  • Demande croissante d'amélioration de la gouvernance et de l'explicabilité des modèles

La demande croissante d’amélioration de la gouvernance et de l’explicabilité des modèles est un facteur important qui propulse le marché mondial des opérations de machine learning (MLOps). À mesure que les organisations intègrent de plus en plus de modèles de machine learning dans leurs opérations, l’accent est mis sur la garantie de la fiabilité, de la transparence et de la responsabilité de ces modèles. Une gouvernance améliorée des modèles implique l’établissement de politiques et de contrôles rigoureux pour gérer l’ensemble du cycle de vie des modèles de machine learning, en abordant des aspects tels que le contrôle des versions, la conformité et la gestion des risques. En outre, le besoin d’une meilleure explicabilité stimule le développement d’outils et de techniques pour interpréter les décisions des modèles, fournir aux parties prenantes des informations sur le comportement des modèles et permettre une prise de décision éclairée. Cet accent mis sur la gouvernance et l’explicabilité souligne le rôle essentiel que jouent les solutions MLOps pour favoriser la confiance, la conformité et la fiabilité au sein des déploiements de machine learning, alimentant ainsi la croissance du marché.

  • Adoption et évolutivité croissantes du cloud

L’adoption croissante du cloud computing et la recherche de l’évolutivité représentent des moteurs essentiels qui propulsent le marché mondial des opérations de machine learning (MLOps). Les organisations exploitant de plus en plus les plateformes cloud pour héberger leur infrastructure de machine learning, il existe un besoin urgent de solutions MLOps capables de s’intégrer de manière transparente aux environnements cloud et de faciliter le déploiement et la gestion de modèles évolutifs. Les services MLOps basés sur le cloud offrent une flexibilité inégalée, permettant aux entreprises de faire évoluer rapidement leurs opérations de machine learning en réponse à la demande fluctuante tout en rationalisant la collaboration, le contrôle des versions et l’optimisation des ressources. En conséquence, la convergence de l’adoption croissante du cloud et des exigences d’évolutivité souligne le rôle indispensable des solutions MLOps dans l’orchestration de flux de travail de machine learning efficaces, agiles et évolutifs à l’échelle mondiale.

Opportunités

  • Intégration avec les technologies émergentes

Integration with emerging technologies presents a significant opportunity for the global MLOps market. As new technologies such as artificial intelligence (AI), edge computing, Internet of Things (IoT), and blockchain continue to evolve, there arises a complementary need for advanced MLOps solutions that can seamlessly integrate with these emerging technologies. Leveraging MLOps tools and practices, organizations can enhance the efficiency, reliability, and scalability of their AI and machine learning initiatives across diverse domains. Integration with emerging technologies enables MLOps platforms to address complex use cases, such as real-time analytics, predictive maintenance, autonomous systems, and personalized user experiences, thereby unlocking new avenues for innovation and competitive differentiation in the market.

  • Rising Focus on SMEs and Individual Developers

The growing focus on small and medium enterprises (SMEs) and individual developers presents a significant opportunity for the Global MLOps Market. As the adoption of machine learning and AI expands beyond large enterprises, SMEs and individual developers are increasingly seeking accessible and cost-effective MLOps solutions tailored to their specific needs and resource constraints. Catering to this growing segment of the market, MLOps providers into a vast pool of potential customers eager to leverage machine learning capabilities for enhancing their products, services, and operations. Moreover, empowering SMEs and individual developers with user-friendly MLOps platforms can democratize access to advanced analytics and automation, fostering innovation and driving broader adoption of machine learning technologies across diverse industries and applications.

Restraints/Challenges

  • Rising Data Security Risks

The escalation of data security risks poses a substantial challenge for the global MLOPs market. With the proliferation of sensitive data utilized in machine learning operations, including personally identifiable information and proprietary business data, the potential for data breaches, unauthorized access, and malicious attacks becomes increasingly pronounced. Ensuring the confidentiality, integrity, and availability of data throughout the MLOps lifecycle, from training to deployment and beyond, requires robust security measures and adherence to stringent compliance standards. However, the complexity of MLOps workflows, coupled with the distributed nature of data processing and storage, complicates security efforts and heightens vulnerability to cyber threats.

  • Complexity of MLOps Tools

The complexity associated with MLOps tools emerges as a significant challenge for the Global MLOps Market. While these tools offer advanced capabilities for managing and deploying machine learning models, their intricate nature often presents barriers to adoption, particularly for organizations lacking specialized expertise or resources. Complex MLOps tools may require extensive training and technical proficiency to effectively navigate, leading to longer implementation times, higher costs, and increased risk of errors. Additionally, the rapid pace of innovation in the MLOps space further compounds this challenge, as organizations struggle to keep pace with evolving technologies and best practices.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, the impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact the Data Bridge Market Research for an Analyst Brief, our team will help you make an informed market decision to achieve market growth.

Recent Developments

  • In May 2021, Google Cloud launched Vertex AI, a managed machine learning platform, integrating various services for building, training, and deploying machine learning models, simplifying the AI development lifecycle. This initiative aimed to streamline model development and deployment processes, enabling organizations to accelerate AI adoption and achieve business objectives efficiently
  • In September 2019, DataRobot launched its MLOps solution after acquiring ParallelM, integrating model management and monitoring capabilities for centralized deployment, monitoring, and governance of machine learning models across enterprises, ultimately enhancing AI deployment efficiency. This initiative aimed to address the challenges faced by organizations in deriving measurable value from AI projects by providing a comprehensive solution for automating and managing the entire machine learning lifecycle

Global MLOPs Market Scope

The market is segmented on the basis of component, deployment mode , organization size, and industry verticals. The growth amongst these segments will help you analyze meager growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component

  • Platform
  • Service

Deployment Mode

  • On Premise
  • Cloud
  • Hybrid

Organization Size

  • Large Enterprises
  • Small and Medium-sized Enterprises (SMEs)

Industry Verticals

  • Financial Services (BFSI)
  • Manufacturing
  • Information Technology (IT) and Telecom
  • Retail and E-commerce
  • Healthcare
  • Others

MLOPs market Region Analysis/Insights

The market is analyzed and market size insights and trends are provided by region, component, deployment mode , organization size, and industry verticals, as referenced above.

The regions covered in the market are North America, South America, Europe, Asia-Pacific, and the Middle East and Africa. The countries covered in the global MLOPs market report are U.S., Canada, Mexico, Brazil, Argentina, the Rest of South America, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of the Middle East and Africa.

North America dominates the global MLOps market for several reasons. The region boasts a robust ecosystem of technology companies, research institutions, and skilled professionals specializing in machine learning and data science, fostering innovation and driving market leadership. Additionally, North America is home to many leading cloud service providers, offering scalable infrastructure and advanced MLOps solutions that cater to diverse business needs. Moreover, the region's strong regulatory environment, coupled with a mature enterprise market, encourages widespread adoption of MLOps practices to ensure compliance, governance, and risk management. Furthermore, North America's entrepreneurial culture and venture capital ecosystem facilitate the rapid growth of startups and emerging players in the MLOps space, contributing to the region's dominance in the global market. Overall, the convergence of technological expertise, supportive infrastructure, regulatory frameworks, and entrepreneurial dynamism positions North America as a frontrunner in driving the advancement and adoption of MLOps worldwide.

The Asia-Pacific region emerges as the fastest-growing region in the global MLOPs market due to several key factors. The region is witnessing rapid digital transformation across various industries, driving the adoption of machine learning and AI technologies to enhance business efficiency and competitiveness. As organizations in Asia-Pacific increasingly recognize the strategic importance of data-driven insights, there is a growing demand for MLOps solutions to streamline the development, deployment, and management of machine learning models.

The region section of the report also provides individual market-impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as downstream and upstream value chain analysis, technical trends, and Porter’s five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and the challenges faced due to large or scarce competition from local and domestic brands, the impact of domestic tariffs, and trade routes are considered while providing forecast analysis of the region data.   

Competitive Landscape and MLOPs market Share Analysis

The market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, and application dominance. The above data points provided are only related to the companies' focus related to the market.

Some of the major players operating in the market are:

  • Databricks (U.S.)
  • Domino Data Lab (U.S.)
  • Kubeflow (by Google) (U.S.)
  • Amazon SageMaker (U.S.)
  • Paperspace Gradient (U.S.)
  • Fiddler AI (U.S.)
  • MLflow (by Databricks) (U.S.)
  • Valohai (Finland)
  • Pachyderm (U.S.)
  • ZenML (Germany)


SKU-

Accédez en ligne au rapport sur le premier cloud mondial de veille économique

  • Tableau de bord d'analyse de données interactif
  • Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
  • Accès d'analyste de recherche pour la personnalisation et les requêtes
  • Analyse de la concurrence avec tableau de bord interactif
  • Dernières actualités, mises à jour et analyse des tendances
  • Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Demande de démonstration

Méthodologie de recherche

La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.

Personnalisation disponible

Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Questions fréquemment posées

The MLOPs market size will be worth USD 11.69 billion by 2031.
The growth rate of the MLOPs market is 5.5%.
Growing Demand for Improved Model Governance and Explainability & Rising Cloud Adoption and Scalability are the growth drivers of the MLOPs market.
Component, deployment mode , organization size, and industry verticals are the factors on which the MLOPs market research is based.
Major companies in the MLOPs market are Databricks (U.S.), Domino Data Lab (U.S.), Kubeflow (by Google) (U.S.), Amazon SageMaker (U.S.), Paperspace Gradient (U.S.), Fiddler AI (U.S.), MLflow (by Databricks) (U.S.), Valohai (Finland), Pachyderm (U.S.), ZenML (Germany).