Image

Marché mondial des puces d’apprentissage automatique – Tendances et prévisions de l’industrie jusqu’en 2029

Semi-conducteurs et électronique

Image

Marché mondial des puces d’apprentissage automatique – Tendances et prévisions de l’industrie jusqu’en 2029

  • Semi-conducteurs et électronique
  • Rapport à venir
  • avril 2022
  • Mondial
  • 350 pages
  • Nombre de tables : 220
  • Nombre de figurines : 60

Marché mondial des puces d’apprentissage automatique – Tendances et prévisions de l’industrie jusqu’en 2029

Taille du marché en milliards USD

TCAC : % Diagram

Diagram Période de prévision 2021-2029
Diagram Taille du marché (année de référence) 1,78 million de dollars
Diagram Taille du marché (année de prévision) 2,45 millions de dollars
Diagram TCAC %

Acteurs majeurs des marchés

  • Google Inc
  • Services Web Amazon
  • Inc.
  • Micro-systèmes avancés
  • Inc.

Marché mondial des puces d’apprentissage automatique, par type de puce (GPU, ASIC, FPGA, CPU, autres), technologie (système sur puce, système dans l’emballage, module multi-puces, autres), secteur vertical (médias et publicité, BFSI, informatique et télécommunications, vente au détail, soins de santé, automobile et transports, autres) - Tendances et prévisions du secteur jusqu'en 2029.

Machine Learning Chip Market

Analyse et taille du marché

Les puces d'apprentissage automatique sont largement utilisées à des fins de prévention des erreurs et de réduction des coûts dans divers secteurs, notamment l'automobile, les transports, la fabrication, les médias et la publicité, ainsi que la finance. L'infrastructure matérielle comprend le stockage, l'informatique, les composants et la mise en réseau.

Le marché mondial des puces d’apprentissage automatique était évalué à 1,78 milliard de dollars en 2021 et devrait atteindre 144,24 milliards de dollars d’ici 2029, enregistrant un TCAC de 41,10 % au cours de la période de prévision 2022-2029. Le système sur puce représente le segment technologique le plus important sur le marché respectif en raison de la forte utilisation de cette technologie par les fournisseurs pour réduire les coûts. Le rapport de marché organisé par l’équipe d’études de marché Data Bridge comprend une analyse approfondie d’experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse du pilon.

Définition du marché

L'apprentissage automatique (ML) est défini comme faisant partie de intelligence artificielle (IA), qui fonctionne généralement sur l'apprentissage expérientiel au lieu de la programmation pour la tâche de prise de décision. Ces puces sont installées pour améliorer les cœurs de propriété intellectuelle. Ceux-ci aident à améliorer les résultats en termes de performances et de zone (PPA) grâce au ML, à la puissance, à l'optimisation et à l'analyse.

Portée du rapport et segmentation du marché

Mesure du rapport

Détails

Période de prévision

2022 à 2029

Année de référence

2021

Années historiques

2020 (personnalisable de 2019 à 2014)

Unités quantitatives

Chiffre d'affaires en milliards USD, volumes en unités, prix en USD

Segments couverts

Type de puce (GPU, ASIC, FPGA, CPU, autres), technologie (Système sur puce, System-in-Package, module multi-puces, autres), secteur vertical (médias et publicité, BFSI, informatique et télécommunications, vente au détail, soins de santé, automobile et transports, autres)

Pays couverts

États-Unis, Canada et Mexique en Amérique du Nord, Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie, Reste de l'Europe en Europe, Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique (APAC) dans la région Asie-Pacifique (APAC), Arabie saoudite, Émirats arabes unis, Israël, Égypte, Afrique du Sud, Reste du Moyen-Orient et Afrique (MEA) dans le cadre du Moyen-Orient. et l'Afrique (MEA), le Brésil, l'Argentine et le reste de l'Amérique du Sud dans le cadre de l'Amérique du Sud.

Acteurs du marché couverts

Google Inc (États-Unis), Amazon Web Services, Inc. (États-Unis), Advanced Micro Devices, Inc (États-Unis), BitMain Technologies Holding Company (Chine), Intel Corporation (États-Unis), Xilinx (États-Unis), SAMSUNG (Corée du Sud), Qualcomm Technologies, Inc. (États-Unis), NVIDIA Corporation (États-Unis), Wave Computing, Inc. (États-Unis), Graphcore (Royaume-Uni), IBM Corporation (États-Unis), Taiwan Semiconductor Manufacturing Company Limited (Taiwan) et Micron Technology, Inc. (États-Unis), entre autres

Opportunités de marché

  • Hausse de la tendance à la numérisation parallèlement à l’expansion de l’industrie des technologies de l’information (TI)
  • Augmentation du nombre de cyberattaques encourageant les industries
  • Intégration avec l'analyse du Big Data et le cloud computing

Dynamique du marché des puces d’apprentissage automatique

Cette section traite de la compréhension des moteurs du marché, des avantages, des opportunités, des contraintes et des défis. Tout cela est discuté en détail ci-dessous :

Conducteurs

  • Hausse de la tendance à la numérisation

La tendance croissante à la numérisation ainsi que l’expansion de l’industrie des technologies de l’information (TI) à travers le monde sont l’un des principaux facteurs à l’origine de la croissance du marché des puces d’apprentissage automatique. Les algorithmes d'apprentissage en profondeur sont capables d'intercepter automatiquement les points de données disponibles, ce qui améliore la précision et l'efficacité du processus décisionnel.

  • Augmentation des cyberattaques

L'augmentation du nombre de cyberattaques encourageant les industries à recourir à la gestion de bases de données, systèmes de détection de fraude et la cyber-sécurité accélérer le marché.

Intégration avec des technologies avancées

L’intégration avec l’analyse du Big Data et le cloud computing pour offrir des services améliorés à diverses industries influence davantage le marché. Les activités de recherche et développement (RandD) améliorent les solutions de traitement matériel et logiciel pour l'apprentissage profond.

De plus, l’urbanisation rapide, le changement de mode de vie, l’augmentation des investissements et l’augmentation des dépenses de consommation ont un impact positif sur le marché des puces d’apprentissage automatique.

Opportunités

En outre, l’accent croissant mis sur le développement de systèmes d’IA conscients de l’humain offre des opportunités rentables aux acteurs du marché au cours de la période de prévision de 2022 à 2029. En outre, amener l’IA aux appareils de pointe élargira davantage le marché.

Contraintes/Défis

D’un autre côté, le faible retour sur investissement et le manque de main-d’œuvre qualifiée en IA devraient entraver la croissance du marché. En outre, des données structurées limitées devraient remettre en cause le marché des puces d’apprentissage automatique au cours de la période de prévision 2022-2029.

Ce rapport sur le marché des puces d’apprentissage automatique fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l’analyse de l’import-export, l’analyse de la production, l’optimisation de la chaîne de valeur, la part de marché, l’impact des acteurs du marché nationaux et localisés, analyse les opportunités en termes de poches de revenus émergentes, les changements dans réglementations du marché, analyse stratégique de la croissance du marché, taille du marché, croissances des catégories de marché, niches d’application et domination, approbations de produits, lancements de produits, expansions géographiques, innovations technologiques sur le marché. Pour obtenir plus d’informations sur le marché des puces d’apprentissage automatique, contactez Data Bridge Market Research pour obtenir une note d’analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.

Impact de COVID-19 sur le marché des puces d’apprentissage automatique

Le COVID-19 a eu un impact négatif sur le marché des puces d’apprentissage automatique en raison des confinements stricts et de la distanciation sociale visant à contenir la propagation du virus. L'incertitude économique, la fermeture partielle de l'entreprise et la faible confiance des consommateurs ont eu un impact sur la demande en matière de technologie de puces d'apprentissage automatique. La chaîne d’approvisionnement a été entravée pendant la pandémie et les activités logistiques ont été retardées. Cependant, le marché des puces d’apprentissage automatique devrait retrouver son rythme dans le scénario post-pandémique en raison de l’assouplissement des restrictions.

DEVELOPPEMENTS récents

  • NVIDIA a lancé deux produits puissants pour sa plate-forme EGX Edge AI et EGX A100 en mai 2020 pour les grands serveurs commerciaux disponibles dans le commerce. Ces plateformes sont capables de déployer, mettre à jour et gérer à distance des flottes de serveurs en toute sécurité.
  • NVIDIA a annoncé le NVIDIA A100, le premier GPU basé sur l'architecture NVIDIA Ampere en mai 2020. Il est en pleine production et expédié aux clients du monde entier. Il s'appuie sur les avancées de conception de l'architecture NVIDIA Ampere et offre le plus grand progrès de performance jamais réalisé par l'entreprise.

Portée du marché mondial des puces d’apprentissage automatique et taille du marché

Le marché des puces d’apprentissage automatique est segmenté en fonction du type de puce, de la technologie et de l’industrie verticale. La croissance de ces segments vous aidera à analyser les maigres segments de croissance des secteurs et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.

Type de puce

  • GPU
  • ASIC
  • FPGA
  • CPU
  • Autres
  • NPU
  • Puce hybride

Technologie

Industrie verticale

  • Médias et publicité
  • BFSI
  • Informatique et Télécom
  • Vente au détail
  • Soins de santé
  • Automobile et transports
  • Autres

Analyse/performances régionales du marché des puces d’apprentissage automatique

Le marché des puces d’apprentissage automatique est analysé et des informations et tendances sur la taille du marché sont fournies par pays, type de puce, technologie et secteur d’activité, comme indiqué ci-dessus.

Les pays couverts dans le rapport sur le marché des puces d’apprentissage automatique sont les États-Unis, le Canada et le Mexique en Amérique du Nord, l’Allemagne, la France, le Royaume-Uni, les Pays-Bas, la Suisse, la Belgique, la Russie, l’Italie, l’Espagne, la Turquie, le reste de l’Europe en Europe, la Chine, le Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique (APAC), Arabie Saoudite, Émirats arabes unis, Israël, Égypte, Afrique du Sud, Reste du Moyen-Orient et l'Afrique (MEA) dans le cadre du Moyen-Orient et de l'Afrique (MEA), le Brésil, l'Argentine et le reste de l'Amérique du Sud dans le cadre de l'Amérique du Sud.

L'Amérique du Nord domine le marché des puces d'apprentissage automatique en raison des préoccupations croissantes concernant la sécurité des infrastructures critiques et des données sensibles dans la région.

L’Europe devrait connaître une croissance significative au cours de la période de prévision de 2022 à 2029 en raison de l’adoption de technologies de pointe dans la région.

La section nationale du rapport fournit également des facteurs individuels ayant un impact sur le marché et des changements dans la réglementation du marché national qui ont un impact sur les tendances actuelles et futures du marché. Les points de données tels que l'analyse de la chaîne de valeur en aval et en amont, les tendances techniques et l'analyse des cinq forces du porteur, les études de cas sont quelques-uns des indicateurs utilisés pour prévoir le scénario de marché pour chaque pays. En outre, la présence et la disponibilité des marques mondiales et les défis auxquels elles sont confrontées en raison de la concurrence forte ou rare des marques locales et nationales, de l'impact des tarifs nationaux et des routes commerciales sont pris en compte tout en fournissant une analyse prévisionnelle des données nationales.

Paysage concurrentiel et marché des puces d’apprentissage automatique

Le paysage concurrentiel du marché des puces d’apprentissage automatique fournit des détails par concurrent. Les détails inclus sont un aperçu de l'entreprise, les données financières de l'entreprise, les revenus générés, le potentiel du marché, les investissements dans la recherche et le développement, les nouvelles initiatives de marché, la présence mondiale, les sites et installations de production, les capacités de production, les forces et les faiblesses de l'entreprise, le lancement du produit, la largeur et l'étendue du produit, l'application. dominance. Les points de données ci-dessus fournis sont uniquement liés à l’orientation des entreprises concernant le marché des puces d’apprentissage automatique.

Certains des principaux acteurs opérant sur le marché des puces d’apprentissage automatique sont

  • Google Inc (États-Unis)
  • Amazon Web Services, Inc. (États-Unis)
  • Advanced Micro Devices, Inc (États-Unis)
  • BitMain Technologies Holding Company (Chine)
  • Intel Corporation (États-Unis)
  • Xilinx (États-Unis), SAMSUNG (Corée du Sud)
  • Qualcomm Technologies, Inc. (États-Unis)
  • NVIDIA Corporation (États-Unis)
  • Wave Computing, Inc. (États-Unis)
  • Graphcore (Royaume-Uni)
  • IBM Corporation (États-Unis)
  • Taiwan Semiconductor Manufacturing Company Limited (Taïwan)
  • Micron Technology, Inc. (États-Unis)


SKU-

Veuillez remplir le formulaire ci-dessous pour une table des matières détaillée

En cliquant sur le bouton « Envoyer », vous acceptez l'étude de marché Data Bridge. politique de confidentialité et Termes et conditions

Veuillez remplir le formulaire ci-dessous pour la liste détaillée des tableaux

En cliquant sur le bouton « Envoyer », vous acceptez l'étude de marché Data Bridge. politique de confidentialité et Termes et conditions

Veuillez remplir le formulaire ci-dessous pour une liste détaillée des figures

En cliquant sur le bouton « Envoyer », vous acceptez l'étude de marché Data Bridge. politique de confidentialité et Termes et conditions

Veuillez remplir le formulaire ci-dessous pour l'infographie

En cliquant sur le bouton « Envoyer », vous acceptez l'étude de marché Data Bridge. politique de confidentialité et Termes et conditions

Méthodologie de recherche :

La collecte de données et l'analyse de l'année de référence sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape comprend l'obtention d'informations sur le marché ou de données connexes via diverses sources et stratégies. Cela comprend l’examen et la planification à l’avance de toutes les données acquises du passé. Il englobe également l’examen des incohérences d’informations observées dans différentes sources d’informations. Les données de marché sont analysées et estimées à l’aide de modèles statistiques et cohérents de marché. En outre, l’analyse des parts de marché et l’analyse des tendances clés sont les principaux facteurs de succès du rapport sur le marché. Pour en savoir plus, veuillez demander un appel d’analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données comprennent une grille de positionnement des fournisseurs, une analyse de la chronologie du marché, un aperçu et un guide du marché, une grille de positionnement de l'entreprise, une analyse des brevets, une analyse des prix, une analyse de la part de marché de l'entreprise, des normes de mesure, une analyse mondiale par rapport à une analyse régionale et de la part des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, déposez une demande pour parler à nos experts du secteur.

Veuillez remplir le formulaire ci-dessous pour la méthodologie de recherche

En cliquant sur le bouton « Envoyer », vous acceptez l'étude de marché Data Bridge. politique de confidentialité et Termes et conditions

Personnalisation disponible :

Data Bridge Market Research est un leader en matière de recherche formative avancée. Nous sommes fiers de servir nos clients existants et nouveaux avec des données et des analyses qui correspondent à leur objectif. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles comprenant le marché de pays supplémentaires (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché du reconditionné et de la base de produits. L’analyse du marché des concurrents cibles peut être analysée depuis l’analyse technologique jusqu’aux stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents sur lesquels vous avez besoin de données dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de tableaux croisés dynamiques de fichiers Excel bruts (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Veuillez remplir le formulaire ci-dessous pour la personnalisation disponible

En cliquant sur le bouton « Envoyer », vous acceptez l'étude de marché Data Bridge. politique de confidentialité et Termes et conditions

POSEZ FRÉQUEMMENT DES QUESTIONS

Le marché des puces d’apprentissage automatique devrait atteindre 144,24 milliards de dollars d’ici 2029.
Le marché des puces d’apprentissage automatique devrait connaître un TCAC de 41,10 % au cours des prévisions d’ici 2029.
La tendance croissante à la numérisation ainsi que l’expansion de l’industrie des technologies de l’information (TI) accélèrent la croissance du marché des puces d’apprentissage automatique. L’augmentation du nombre de cyberattaques encourageant les industries et l’intégration de l’analyse du Big Data et du cloud computing pour offrir des services améliorés à diverses industries contribueront à l’expansion du marché.
Les principaux acteurs opérant sur le marché des puces d’apprentissage automatique sont Google Inc (États-Unis), Amazon Web Services, Inc. (États-Unis), Advanced Micro Devices, Inc (États-Unis), BitMain Technologies Holding Company (Chine), Intel Corporation (États-Unis), Xilinx (États-Unis), SAMSUNG (Corée du Sud), Qualcomm Technologies, Inc. (États-Unis), NVIDIA Corporation (États-Unis), Wave Computing, Inc. (États-Unis), Graphcore (Royaume-Uni), IBM Corporation (États-Unis), Taiwan Semiconductor Manufacturing Company Limited (Taïwan) et Micron Technology, Inc. (États-Unis), entre autres.
Exemple de rapport gratuit

CHOISISSEZ LE TYPE DE LICENCE

  • 7000.00
  • 4800.00
  • 3000.00
  • 8000.00
  • 12000.00

Pourquoi nous choisir

Couverture de l'industrie

DBMR travaille à travers le monde dans plusieurs secteurs, ce qui nous confère des connaissances dans tous les secteurs verticaux et fournit à nos clients des informations non seulement sur leur secteur, mais également sur l'impact d'autres secteurs sur leur écosystème.

Couverture régionale

La couverture de Data Bridge ne se limite pas aux économies développées ou émergentes. Nous travaillons dans le monde entier, couvrant le plus grand nombre de pays dans lesquels aucune autre société d'études de marché ou de conseil en affaires n'a jamais mené de recherche ; créer des opportunités de croissance pour nos clients dans des domaines encore méconnus.

Couverture technologique

Dans le monde d'aujourd'hui, la technologie détermine le sentiment du marché. Notre vision est donc de fournir à nos clients des informations non seulement sur les technologies développées, mais aussi sur les changements technologiques à venir et perturbateurs tout au long du cycle de vie du produit, en leur offrant des opportunités imprévues sur le marché qui créeront une perturbation dans leur secteur. . Cela conduit à l’innovation et à nos clients d’en sortir gagnants.

Solutions orientées objectifs

L'objectif de DBMR est d'aider nos clients à atteindre leurs objectifs grâce à nos solutions ; c'est pourquoi nous créons de manière formative les solutions les plus appropriées aux besoins de nos clients, leur permettant ainsi d'économiser du temps et des efforts pour mener leurs grandes stratégies.

Support d’analyste inégalé

Nos analystes sont fiers du succès de nos clients. Contrairement à d'autres, nous croyons qu'il est important de travailler aux côtés de nos clients pour atteindre leurs objectifs avec un soutien d'analyste 24 heures sur 24 pour déterminer les besoins corrects et inspirer l'innovation par le service.

Banner

Témoignages clients