Marché mondial des puces d’apprentissage automatique, par type de puce (GPU, ASIC, FPGA, CPU, autres), technologie (système sur puce, système dans l’emballage, module multi-puces, autres), secteur vertical (médias et publicité, BFSI, informatique et télécommunications, vente au détail, soins de santé, automobile et transports, autres) - Tendances et prévisions du secteur jusqu'en 2029.
Analyse et taille du marché
Les puces d'apprentissage automatique sont largement utilisées à des fins de prévention des erreurs et de réduction des coûts dans divers secteurs, notamment l'automobile, les transports, la fabrication, les médias et la publicité, ainsi que la finance. L'infrastructure matérielle comprend le stockage, l'informatique, les composants et la mise en réseau.
Le marché mondial des puces d’apprentissage automatique était évalué à 1,78 milliard de dollars en 2021 et devrait atteindre 144,24 milliards de dollars d’ici 2029, enregistrant un TCAC de 41,10 % au cours de la période de prévision 2022-2029. Le système sur puce représente le segment technologique le plus important sur le marché respectif en raison de la forte utilisation de cette technologie par les fournisseurs pour réduire les coûts. Le rapport de marché organisé par l’équipe d’études de marché Data Bridge comprend une analyse approfondie d’experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse du pilon.
Définition du marché
L'apprentissage automatique (ML) est défini comme faisant partie de intelligence artificielle (IA), qui fonctionne généralement sur l'apprentissage expérientiel au lieu de la programmation pour la tâche de prise de décision. Ces puces sont installées pour améliorer les cœurs de propriété intellectuelle. Ceux-ci aident à améliorer les résultats en termes de performances et de zone (PPA) grâce au ML, à la puissance, à l'optimisation et à l'analyse.
Portée du rapport et segmentation du marché
Mesure du rapport |
Détails |
Période de prévision |
2022 à 2029 |
Année de référence |
2021 |
Années historiques |
2020 (personnalisable de 2019 à 2014) |
Unités quantitatives |
Chiffre d'affaires en milliards USD, volumes en unités, prix en USD |
Segments couverts |
Type de puce (GPU, ASIC, FPGA, CPU, autres), technologie (Système sur puce, System-in-Package, module multi-puces, autres), secteur vertical (médias et publicité, BFSI, informatique et télécommunications, vente au détail, soins de santé, automobile et transports, autres) |
Pays couverts |
États-Unis, Canada et Mexique en Amérique du Nord, Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie, Reste de l'Europe en Europe, Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique (APAC) dans la région Asie-Pacifique (APAC), Arabie saoudite, Émirats arabes unis, Israël, Égypte, Afrique du Sud, Reste du Moyen-Orient et Afrique (MEA) dans le cadre du Moyen-Orient. et l'Afrique (MEA), le Brésil, l'Argentine et le reste de l'Amérique du Sud dans le cadre de l'Amérique du Sud. |
Acteurs du marché couverts |
Google Inc (États-Unis), Amazon Web Services, Inc. (États-Unis), Advanced Micro Devices, Inc (États-Unis), BitMain Technologies Holding Company (Chine), Intel Corporation (États-Unis), Xilinx (États-Unis), SAMSUNG (Corée du Sud), Qualcomm Technologies, Inc. (États-Unis), NVIDIA Corporation (États-Unis), Wave Computing, Inc. (États-Unis), Graphcore (Royaume-Uni), IBM Corporation (États-Unis), Taiwan Semiconductor Manufacturing Company Limited (Taiwan) et Micron Technology, Inc. (États-Unis), entre autres |
Opportunités de marché |
|
Dynamique du marché des puces d’apprentissage automatique
Cette section traite de la compréhension des moteurs du marché, des avantages, des opportunités, des contraintes et des défis. Tout cela est discuté en détail ci-dessous :
Conducteurs
- Hausse de la tendance à la numérisation
La tendance croissante à la numérisation ainsi que l’expansion de l’industrie des technologies de l’information (TI) à travers le monde sont l’un des principaux facteurs à l’origine de la croissance du marché des puces d’apprentissage automatique. Les algorithmes d'apprentissage en profondeur sont capables d'intercepter automatiquement les points de données disponibles, ce qui améliore la précision et l'efficacité du processus décisionnel.
- Augmentation des cyberattaques
L'augmentation du nombre de cyberattaques encourageant les industries à recourir à la gestion de bases de données, systèmes de détection de fraude et la cyber-sécurité accélérer le marché.
Intégration avec des technologies avancées
L’intégration avec l’analyse du Big Data et le cloud computing pour offrir des services améliorés à diverses industries influence davantage le marché. Les activités de recherche et développement (RandD) améliorent les solutions de traitement matériel et logiciel pour l'apprentissage profond.
De plus, l’urbanisation rapide, le changement de mode de vie, l’augmentation des investissements et l’augmentation des dépenses de consommation ont un impact positif sur le marché des puces d’apprentissage automatique.
Opportunités
En outre, l’accent croissant mis sur le développement de systèmes d’IA conscients de l’humain offre des opportunités rentables aux acteurs du marché au cours de la période de prévision de 2022 à 2029. En outre, amener l’IA aux appareils de pointe élargira davantage le marché.
Contraintes/Défis
D’un autre côté, le faible retour sur investissement et le manque de main-d’œuvre qualifiée en IA devraient entraver la croissance du marché. En outre, des données structurées limitées devraient remettre en cause le marché des puces d’apprentissage automatique au cours de la période de prévision 2022-2029.
Ce rapport sur le marché des puces d’apprentissage automatique fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l’analyse de l’import-export, l’analyse de la production, l’optimisation de la chaîne de valeur, la part de marché, l’impact des acteurs du marché nationaux et localisés, analyse les opportunités en termes de poches de revenus émergentes, les changements dans réglementations du marché, analyse stratégique de la croissance du marché, taille du marché, croissances des catégories de marché, niches d’application et domination, approbations de produits, lancements de produits, expansions géographiques, innovations technologiques sur le marché. Pour obtenir plus d’informations sur le marché des puces d’apprentissage automatique, contactez Data Bridge Market Research pour obtenir une note d’analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.
Impact de COVID-19 sur le marché des puces d’apprentissage automatique
Le COVID-19 a eu un impact négatif sur le marché des puces d’apprentissage automatique en raison des confinements stricts et de la distanciation sociale visant à contenir la propagation du virus. L'incertitude économique, la fermeture partielle de l'entreprise et la faible confiance des consommateurs ont eu un impact sur la demande en matière de technologie de puces d'apprentissage automatique. La chaîne d’approvisionnement a été entravée pendant la pandémie et les activités logistiques ont été retardées. Cependant, le marché des puces d’apprentissage automatique devrait retrouver son rythme dans le scénario post-pandémique en raison de l’assouplissement des restrictions.
DEVELOPPEMENTS récents
- NVIDIA a lancé deux produits puissants pour sa plate-forme EGX Edge AI et EGX A100 en mai 2020 pour les grands serveurs commerciaux disponibles dans le commerce. Ces plateformes sont capables de déployer, mettre à jour et gérer à distance des flottes de serveurs en toute sécurité.
- NVIDIA a annoncé le NVIDIA A100, le premier GPU basé sur l'architecture NVIDIA Ampere en mai 2020. Il est en pleine production et expédié aux clients du monde entier. Il s'appuie sur les avancées de conception de l'architecture NVIDIA Ampere et offre le plus grand progrès de performance jamais réalisé par l'entreprise.
Portée du marché mondial des puces d’apprentissage automatique et taille du marché
Le marché des puces d’apprentissage automatique est segmenté en fonction du type de puce, de la technologie et de l’industrie verticale. La croissance de ces segments vous aidera à analyser les maigres segments de croissance des secteurs et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.
Type de puce
- GPU
- ASIC
- FPGA
- CPU
- Autres
- NPU
- Puce hybride
Technologie
- Système sur puce
- Système dans le package
- Module multi-puces
- Autres
Industrie verticale
- Médias et publicité
- BFSI
- Informatique et Télécom
- Vente au détail
- Soins de santé
- Automobile et transports
- Autres
Analyse/performances régionales du marché des puces d’apprentissage automatique
Le marché des puces d’apprentissage automatique est analysé et des informations et tendances sur la taille du marché sont fournies par pays, type de puce, technologie et secteur d’activité, comme indiqué ci-dessus.
Les pays couverts dans le rapport sur le marché des puces d’apprentissage automatique sont les États-Unis, le Canada et le Mexique en Amérique du Nord, l’Allemagne, la France, le Royaume-Uni, les Pays-Bas, la Suisse, la Belgique, la Russie, l’Italie, l’Espagne, la Turquie, le reste de l’Europe en Europe, la Chine, le Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique (APAC), Arabie Saoudite, Émirats arabes unis, Israël, Égypte, Afrique du Sud, Reste du Moyen-Orient et l'Afrique (MEA) dans le cadre du Moyen-Orient et de l'Afrique (MEA), le Brésil, l'Argentine et le reste de l'Amérique du Sud dans le cadre de l'Amérique du Sud.
L'Amérique du Nord domine le marché des puces d'apprentissage automatique en raison des préoccupations croissantes concernant la sécurité des infrastructures critiques et des données sensibles dans la région.
L’Europe devrait connaître une croissance significative au cours de la période de prévision de 2022 à 2029 en raison de l’adoption de technologies de pointe dans la région.
La section nationale du rapport fournit également des facteurs individuels ayant un impact sur le marché et des changements dans la réglementation du marché national qui ont un impact sur les tendances actuelles et futures du marché. Les points de données tels que l'analyse de la chaîne de valeur en aval et en amont, les tendances techniques et l'analyse des cinq forces du porteur, les études de cas sont quelques-uns des indicateurs utilisés pour prévoir le scénario de marché pour chaque pays. En outre, la présence et la disponibilité des marques mondiales et les défis auxquels elles sont confrontées en raison de la concurrence forte ou rare des marques locales et nationales, de l'impact des tarifs nationaux et des routes commerciales sont pris en compte tout en fournissant une analyse prévisionnelle des données nationales.
Paysage concurrentiel et marché des puces d’apprentissage automatique
Le paysage concurrentiel du marché des puces d’apprentissage automatique fournit des détails par concurrent. Les détails inclus sont un aperçu de l'entreprise, les données financières de l'entreprise, les revenus générés, le potentiel du marché, les investissements dans la recherche et le développement, les nouvelles initiatives de marché, la présence mondiale, les sites et installations de production, les capacités de production, les forces et les faiblesses de l'entreprise, le lancement du produit, la largeur et l'étendue du produit, l'application. dominance. Les points de données ci-dessus fournis sont uniquement liés à l’orientation des entreprises concernant le marché des puces d’apprentissage automatique.
Certains des principaux acteurs opérant sur le marché des puces d’apprentissage automatique sont
- Google Inc (États-Unis)
- Amazon Web Services, Inc. (États-Unis)
- Advanced Micro Devices, Inc (États-Unis)
- BitMain Technologies Holding Company (Chine)
- Intel Corporation (États-Unis)
- Xilinx (États-Unis), SAMSUNG (Corée du Sud)
- Qualcomm Technologies, Inc. (États-Unis)
- NVIDIA Corporation (États-Unis)
- Wave Computing, Inc. (États-Unis)
- Graphcore (Royaume-Uni)
- IBM Corporation (États-Unis)
- Taiwan Semiconductor Manufacturing Company Limited (Taïwan)
- Micron Technology, Inc. (États-Unis)
SKU-