Global High Performance Computing For Automotive Market
Taille du marché en milliards USD
TCAC : %
Période de prévision |
2024 –2030 |
Taille du marché (année de référence) |
|
Taille du marché (année de prévision) |
Dollars américains 9,059,411.97 |
TCAC |
|
Principaux acteurs du marché |
>Calcul haute performance mondial pour le marché automobile, par offre (solution, logiciel et services), modèle de déploiement (sur site et dans le cloud), taille de l'organisation (grandes entreprises, petites et moyennes entreprises (PME)), type de calcul (calcul parallèle, calcul distribué et calcul exascale), plate-forme (HPC de sécurité et de mouvement, HPC de conduite autonome, HPC de carrosserie, HPC de cockpit et HPC inter-domaines), type de véhicule (voiture de tourisme, véhicule utilitaire léger et véhicule utilitaire lourd) - Tendances et prévisions du secteur jusqu'en 2030.
Analyse et taille du marché du calcul haute performance pour l'automobile
L'augmentation de la demande de recherche HPC à travers le monde est l'un des principaux facteurs de croissance du marché du calcul haute performance. L'augmentation du besoin de calcul efficace, d'évolutivité améliorée et de stockage fiable, ainsi que le besoin croissant de diversification continue, d'expansion de l'industrie informatique, de calcul à haute efficacité et de progrès en matière de virtualisation, accélèrent la croissance du marché. L'augmentation de l'adoption du calcul haute performance en raison de la capacité des systèmes HPC à traiter de gros volumes de données à des vitesses plus élevées et à une utilisation intensive dans divers secteurs influencent encore davantage le marché.
Data Bridge Market Research estime que le marché mondial du calcul haute performance pour l'automobile devrait atteindre une valeur de 9 059 411,97 milliers de dollars d'ici 2030, à un TCAC de 12,1 % au cours de la période de prévision. Le rapport sur le marché mondial du calcul haute performance pour l'automobile couvre également de manière exhaustive l'analyse des prix, l'analyse des brevets et les avancées technologiques.
Rapport métrique |
Détails |
Période de prévision |
2023 à 2030 |
Année de base |
2022 |
Années historiques |
2021 (personnalisable de 2015 à 2020) |
Unités quantitatives |
Chiffre d'affaires en milliers de dollars américains, prix en dollars américains |
Segments couverts |
Offre (solution, logiciel et services), modèle de déploiement (sur site et dans le cloud), taille de l'organisation (grandes entreprises, petites et moyennes entreprises (PME)), type de calcul (calcul parallèle, calcul distribué et calcul exascale), plateforme (HPC de sécurité et de mouvement, HPC de conduite autonome, HPC de carrosserie, HPC de cockpit et HPC inter-domaines), type de véhicule (voiture de tourisme, véhicule utilitaire léger et véhicule utilitaire lourd) |
Régions couvertes |
États-Unis, Canada, Mexique, Brésil, Argentine, Reste de l'Amérique du Sud, Allemagne, France, Royaume-Uni, Russie, Italie, Espagne, Pays-Bas, Pologne, Suisse, Belgique, Suède, Turquie, Danemark, Reste de l'Europe, Japon, Chine, Inde, Corée du Sud, Vietnam, Taïwan, Australie et Nouvelle-Zélande, Singapour, Malaisie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique, Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël, Koweït, Qatar, Reste du Moyen-Orient et de l'Afrique |
Acteurs du marché couverts |
Hewlett Packard Enterprise Development LP, IBM, Lenovo., NVIDIA Corporation, Advanced Micro Devices, Inc., Microsoft, Taiwan Semiconductor Manufacturing Company Limited, Dell Inc., Fujitsu, Elektrobit., NEC Corporation, Beijing Jingwei Hirain Technologies Co., Inc., NXP Semiconductors., ANSYS, Inc, ESI Group, Super Micro Computer, Inc., Altair Engineering Inc., TotalCAE., Vector Informatik GmbH, MiTAC Computing Technology Corporation, Rescale, Inc. |
Market Definition
High-performance computing (HPC) refers to the use of powerful and specialized computer systems that are capable of processing and analyzing vast amounts of data at incredibly high speeds. These systems employ advanced parallel processing techniques and often utilize multiple processors or nodes working together to solve complex problems in scientific research, engineering simulations, financial modeling, weather forecasting, and other computationally intensive tasks. HPC enables researchers and professionals to tackle challenges that would be infeasible or impractical using conventional computers, leading to accelerated discoveries, better insights, and more efficient problem-solving across various domains.
Global High Performance Computing For Automotive Market Dynamics
This section deals with understanding the market drivers, advantages, opportunities, restraints, and challenges. All of this is discussed in detail as below:
Drivers
- Increasing complexity and performance requirements in electronic architecture of a vehicle
Future mobility will have access to a variety of new features and services thanks to digitalization. However, this is also causing an exponential rise in the volume of data and information that needs to be processed. The current electrical/electronics (E/E) architecture is already past its breaking point. Megatrends in the automotive industry including automated driving, software defined vehicles, and linked mobility call for an increasing amount of intelligence and computer capacity. The complexity and performance of today's automobile electrical/electronic architectures are at their maximum. It takes a lot of processing power to support connectivity, over-the-air updates, automated and autonomous driving, and advanced driver assistance systems (ADAS).
- High computing power is required for the design and testing of vehicles
High-performance computing (HPC) for automotive is an improved kind of HPC created to meet the demands of the automobile manufacturing industry in terms of computing power and software compatibility. Modern vehicles are produced using software-enabled precision engineering, which calls for a significant degree of computational performance. HPC can provide the necessary processing capacity at any level of the design process, including feature testing and safety simulation. Software-delivered features within cars themselves are also receiving more attention. With a CASE (connected, autonomous, shared, electric) vision, cars are evolving into Software-Defined Vehicles (SDVs), where the characteristics made possible by code link together the mechanical capabilities.
Opportunity
- The adoption of cloud-based hpc solutions
With technological developments driving innovations in electric mobility, driverless vehicles, and connected cars, the automotive industry is going through a drastic shift. Automotive firms are looking for ways to speed up product development, enhance vehicle performance, and optimize production processes to stay competitive in this quickly changing environment. The adoption of cloud-based High-Performance Computing (HPC) technologies is one strategy that has gained traction lately. Automotive businesses are opening new doors for quicker, more productive, and less expensive research, design, and testing processes by leveraging the power of cloud computing and cutting-edge computer capabilities.
Restraint/Challenge
- High cost of HPC equipments
One of the primary obstacles to HPC technologies' acceptance in autos is their cost. The high cost of purchasing and maintaining HPC systems can be a significant obstacle for automotive companies, particularly small and medium-sized ones. HPC systems typically have a large number of processors, which can drive up the cost. HPC systems typically use high-speed processors, which can also drive up the cost. HPC systems typically need a lot of memory, which can also drive up the cost. HPC systems generate a lot of heat, which requires specialized cooling systems. This can also drive up the cost.
- Handling sensitive automotive data
Automotive manufacturers and mobility providers now place a high priority on connected car security and data privacy. Personal identifying information (PII), customer location, behavior, and financial data, as well as intellectual property associated with the car and the services offered, can all be included in the sensitive data collected via connected automobiles. Employees and contractors throughout the world have access to this sensitive data as it moves through many settings and platforms, both on-premises and in the cloud. Manufacturers are greatly in danger of cyberattacks due to this honeypot of information.
Recent Developments
- In January 2023, NVIDIA Corporation and Hon Hai Technology Group (Foxconn), today announced a strategic partnership to develop automated and autonomous vehicle platforms. As part of the deal, Foxconn will produce electronic control units (ECUs) based on NVIDIA DRIVE Orin for the worldwide automotive market as a tier-one manufacturer
- In November 2022, Dell Inc. announced an extension of its high-performance computing (HPC) portfolio, with new hardware, services, and a hybrid quantum computing solution. The Dell Quantum Computing Solution enables businesses to benefit from quantum technology's enhanced computing. Customers can utilize this to accelerate machine learning, natural language processing, and chemistry and materials simulation
Global High-Performance Computing for Automotive Market Scope
Global high performance computing for automotive market is segmented on the basis of offering, deployment model, organization size, computation type, platform, and vehicle type. The growth amongst these segments will help you analyse meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Offering
- Solution
- Software
- Services
On the basis of offering, global high performance computing for automotive market has been segmented into solution, software, and services.
Deployment Model
- On Premises
- Cloud
On the basis of deployment model, global high performance computing for automotive market has been segmented into on premises and cloud.
Organization Size
- Large Enterprises
- Small and Medium Size Enterprises (SMES)
On the basis of organization size, global high performance computing for automotive market has been segmented into large enterprises and small and medium size enterprises (SMES).
Computation Type
- Parallel Computing
- Distributed Computing
- Exascale Computing
On the basis of computation type, global high performance computing for automotive market has been segmented into parallel computing, distributed computing, and exascale computing.
Platform
- Safety & Motion HPC
- Autonomous Driving HPC
- Body HPC
- Cockpit HPC
- Cross-Domain HPC
On the basis of platform, global high performance computing for automotive market has been segmented into safety & motion HPC, autonomous driving HPC, body HPC, cockpit HPC, and cross-domain HPC.
Vehicle Type
- Passenger Car
- Light Commercial Vehicle
- Heavy Commercial Vehicle
On the basis of vehicle type, global high performance computing for automotive market has been segmented into passenger car, light commercial vehicle, and heavy commercial vehicle.
Global High Performance Computing For Automotive Market Regional Analysis/Insights
Global high performance computing for automotive Market is analysed, and market size insights and trends are provided by region, type, deployment mode, application, and end-user as referenced above.
The regions covered in the global high performance computing for automotive market report are North America, South America, Europe, Asia-Pacific, Middle East and Africa. Asia-Pacific region is expected to dominate in the global high performance computing for automotive market fuelled by various factors, including strong government support, substantial investment in research and development, and collaborations between academia, industry, and research institutions. China dominates in the Asia-Pacific region as China has been investing heavily in HPC infrastructure and research to enhance its technological capabilities and scientific advancements. Moreover, U.S. dominates the North America region owing to factors such as high adoption of HPC technologies in automotive sectors which rely on HPC to accelerate product development, enhance scientific discoveries, and optimize operations.
Europe high performance computing for automotive market has witnessed the highest growth rate among all regions in high performance computing for the automotive market. Owing to factors such as the growing adoption of electric vehicle (EVs) and autonomous driving technology. Germany is dominating the region due to collaborative efforts between automotive manufacturers and HPC providers to develop eco-friendly, lightweight materials and streamline manufacturing processes, promoting sustainability and reducing environmental impact.
The region section of the report also provides individual market-impacting factors and changes in market regulation that impact the current and future trends of the market. Data points like downstream and upstream value chain analysis, technical trends, and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of Global brands and their challenges faced due to large or scarce competition from local and domestic brands, the impact of domestic tariffs, and trade routes are considered while providing forecast analysis of the region data.
Competitive Landscape and Global High Performance Computing For Automotive Market Share Analysis
Global high performance computing for automotive market competitive landscape provides details by the competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, Global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to global high performance computing for automotive market.
Certains des principaux acteurs opérant sur le marché mondial du calcul haute performance pour l'automobile sont, Hewlett Packard Enterprise Development LP, IBM, Lenovo., NVIDIA Corporation, Advanced Micro Devices, Inc., Microsoft, Taiwan Semiconductor Manufacturing Company Limited, Dell Inc., Fujitsu, Elektrobit., NEC Corporation, Beijing Jingwei Hirain Technologies Co., Inc., NXP Semiconductors., ANSYS, Inc, ESI Group, Super Micro Computer, Inc., Altair Engineering Inc., TotalCAE., Vector Informatik GmbH, MiTAC Computing Technology Corporation, Rescale, Inc. et entre autres.
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Table des matières
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATIONS
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 MARKETS COVERED
2.2 GEOGRAPHICAL SCOPE
2.3 YEARS CONSIDERED FOR THE STUDY
2.4 DBMR TRIPOD DATA VALIDATION MODEL
2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.6 DBMR MARKET POSITION GRID
2.7 VENDOR SHARE ANALYSIS
2.8 MULTIVARIATE MODELING
2.9 OFFERING TIMELINE CURVE
2.1 SECONDARY SOURCES
2.11 ASSUMPTIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHTS
4.1 COMPANY SHARE ANALYSIS AT COUNTRY LEVEL
4.2 COMPANY COMPARATIVE ANALYSIS
5 MARKET OVERVIEW
5.1 DRIVERS
5.1.1 INCREASING COMPLEXITY AND PERFORMANCE REQUIREMENTS IN THE ELECTRONIC ARCHITECTURE OF A VEHICLE
5.1.2 HIGH COMPUTING POWER REQUIRED FOR DESIGN AND TESTING OF VEHICLES
5.1.3 RISING INTEGRATION OF AI AND ML TECHNOLOGIES IN AUTOMOBILES
5.2 RESTRAINTS
5.2.1 HIGH COST OF HPC EQUIPMENTS
5.3 OPPORTUNITIES
5.3.1 HIGH-PERFORMANCE COMPUTING CAN OPTIMIZE AUTOMOTIVE MANUFACTURING PROCESSES
5.3.2 THE ADOPTION OF CLOUD-BASED HPC SOLUTIONS
5.4 CHALLENGES
5.4.1 HANDLING SENSITIVE AUTOMOTIVE DATA
6 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING
6.1 OVERVIEW
6.2 SOLUTION
6.2.1 SERVER
6.2.2 STORAGE
6.2.3 NETWORKING DEVICE
6.3 SOFTWARE
6.4 SERVICES
6.4.1 INTEGRATION AND IMPLEMENTATION
6.4.2 SUPPORT AND MAINTENANCE
6.4.3 DESIGNING AND CONSULTING
7 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL
7.1 OVERVIEW
7.2 ON PREMISES
7.3 CLOUD
8 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY ORGANIZATION SIZE
8.1 OVERVIEW
8.2 LARGE ENTERPRISES
8.2.1 ON PREMISES
8.2.2 CLOUD
8.3 SMALL AND MEDIUM SIZE ENTERPRISES (SMES)
8.3.1 ON PREMISES
8.3.2 CLOUD
9 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY COMPUTATION TYPE
9.1 OVERVIEW
9.2 PARALLEL COMPUTING
9.3 DISTRIBUTED COMPUTING
9.4 EXASCALE COMPUTING
10 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY PLATFORM
10.1 OVERVIEW
10.2 SAFETY & MOTION HPC
10.3 AUTONOMOUS DRIVING HPC
10.4 BODY HPC
10.5 COCKPIT HPC
10.6 CROSS-DOMAIN HPC
11 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY VEHICLE TYPE
11.1 OVERVIEW
11.2 PASSENGER CAR
11.2.1 BY TYPE
11.2.1.1 SUV
11.2.1.2 HATCHBACK
11.2.1.3 SEDAN
11.2.1.4 COUPE
11.2.1.5 SPORT CAR
11.2.1.6 CONVERTIBLE
11.2.1.7 OTHERS
11.2.2 BY OFFERING
11.2.2.1 SOLUTION
11.2.2.1.1 SERVER
11.2.2.1.2 STORAGE
11.2.2.1.3 NETWORKING DEVICE
11.2.2.2 SOFTWARE
11.2.2.3 SERVICES
11.3 LIGHT COMMERCIAL VEHICLE
11.3.1 BY TYPE
11.3.1.1 VANS
11.3.1.2 PICK UP TRUCKS
11.3.1.3 MINI BUS
11.3.1.4 TOW TRUCK
11.3.1.5 OTHER
11.3.2 BY OFFERING
11.3.2.1 SOLUTION
11.3.2.1.1 SERVER
11.3.2.1.2 STORAGE
11.3.2.1.3 NETWORKING DEVICE
11.3.2.2 SOFTWARE
11.3.2.3 SERVICES
11.4 HEAVY COMMERCIAL VEHICLE
11.4.1 BY TYPE
11.4.1.1 HEAVY TRUCK
11.4.1.1.1 SEMI-TRAILER TRUCK
11.4.1.1.2 BOX TRUCK
11.4.1.2 OTHERS
11.4.2 BY OFFERING
11.4.2.1 SOLUTION
11.4.2.1.1 SERVER
11.4.2.1.2 STORAGE
11.4.2.1.3 NETWORKING DEVICE
11.4.2.2 SOFTWARE
11.4.2.3 SERVICES
12 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION
12.1 OVERVIEW
12.2 ASIA-PACIFIC
12.2.1 CHINA
12.2.2 JAPAN
12.2.3 SOUTH KOREA
12.2.4 INDIA
12.2.5 AUSTRALIA & NEW ZEALAND
12.2.6 SINGAPORE
12.2.7 TAIWAN
12.2.8 THAILAND
12.2.9 INDONESIA
12.2.10 MALAYSIA
12.2.11 PHILIPPINES
12.2.12 VIETNAM
12.2.13 REST OF ASIA-PACIFIC
12.3 NORTH AMERICA
12.3.1 U.S.
12.3.2 CANADA
12.3.3 MEXICO
12.4 EUROPE
12.4.1 GERMANY
12.4.2 FRANCE
12.4.3 U.K.
12.4.4 RUSSIA
12.4.5 ITALY
12.4.6 SPAIN
12.4.7 NETHERLANDS
12.4.8 POLAND
12.4.9 SWITZERLAND
12.4.10 BELGIUM
12.4.11 SWEDEN
12.4.12 TURKEY
12.4.13 DENMARK
12.4.14 REST OF EUROPE
12.5 SOUTH AMERICA
12.5.1 BRAZIL
12.5.2 ARGENTINA
12.5.3 REST OF SOUTH AMERICA
12.6 MIDDLE EAST AND AFRICA
12.6.1 SAUDI ARABIA
12.6.2 U.A.E.
12.6.3 ISRAEL
12.6.4 SOUTH AFRICA
12.6.5 EGYPT
12.6.6 KUWAIT
12.6.7 QATAR
12.6.8 REST OF MIDDLE EAST AND AFRICA
13 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: GLOBAL
13.2 COMPANY SHARE ANALYSIS: ASIA PACIFIC
13.3 COMPANY SHARE ANALYSIS: NORTH AMERICA
13.4 COMPANY SHARE ANALYSIS: EUROPE
14 SWOT ANALYSIS
15 COMPANY PROFILE
15.1 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 COMPANY SHARE ANALYSIS
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 IBM
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 COMPANY SHARE ANALYSIS
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENT
15.3 LENOVO
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 COMPANY SHARE ANALYSIS
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENTS
15.4 NVIDIA CORPORATION
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 COMPANY SHARE ANALYSIS
15.4.4 PRODUCT PROTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 ADVANCED MICRO DEVICES, INC.
15.5.1 COMPANY SNAPSHOT
15.5.2 REVENUE ANALYSIS
15.5.3 COMPANY SHARE ANALYSIS
15.5.4 PRODUCT PORTFOLIO
15.5.5 RECENT DEVELOPMENTS
15.6 ALTAIR ENGINEERING INC.
15.6.1 COMPANY SNAPSHOT
15.6.2 REVENUE ANALYSIS
15.6.3 PRODUCT PORTFOLIO
15.6.4 RECENT DEVELOPMENTS
15.7 ANSYS, INC
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 PRODUCT PORTFOLIO
15.7.4 RECENT DEVELOPMENTS
15.8 BEIJING JINGWEI HIRAIN TECHNOLOGIES CO., INC.
15.8.1 COMPANY SNAPSHOT
15.8.2 REVENUE ANALYSIS
15.8.3 PRODUCT PORTFOLIO
15.8.4 RECENT DEVELOPMENTS
15.9 DELL INC.
15.9.1 COMPANY SNAPSHOT
15.9.2 REVENUE ANALYSIS
15.9.3 PRODUCT PORTFOLIO
15.9.4 RECENT DEVELOPMENTS
15.1 ELEKTROBIT
15.10.1 COMPANY SNAPSHOT
15.10.2 SOLUTION PORTFOLIO
15.10.3 RECENT DEVELOPMENTS
15.11 ESI GROUP
15.11.1 COMPANY SNAPSHOT
15.11.2 REVENUE ANALYSIS
15.11.3 PRODUCT PORTFOLIO
15.11.4 RECENT DEVELOPMENT
15.12 FUJITSU
15.12.1 COMPANY SNAPSHOT
15.12.2 REVENUE ANALYSIS
15.12.3 PRODUCT PORTFOLIO
15.12.4 RECENT DEVELOPMENTS
15.13 MICROSOFT
15.13.1 COMPANY SNAPSHOT
15.13.2 REVENUE ANALYSIS
15.13.3 PRODUCT PORTFOLIO
15.13.4 RECENT DEVELOPMENTS
15.14 NEC CORPORATION
15.14.1 COMPANY SNAPSHOT
15.14.2 REVENUE ANALYSIS
15.14.3 PRODUCT PORTFOLIO
15.14.4 RECENT DEVELOPMENTS
15.15 NXP SEMICONDUCTORS
15.15.1 COMPANY SNAPSHOT
15.15.2 REVENUE ANALYSIS
15.15.3 PRODUCT PORTFOLIO
15.15.4 RECENT DEVELOPMENTS
15.16 RESCALE, INC.
15.16.1 COMPANY SNAPSHOT
15.16.2 PRODUCT PORTFOLIO
15.16.3 RECENT DEVELOPMENTS
15.17 SUPER MICRO COMPUTER, INC.
15.17.1 COMPANY SNAPSHOT
15.17.2 REVENUE ANALYSIS
15.17.3 PRODUCT PORTFOLIO
15.17.4 RECENT DEVELOPMENTS
15.18 TAIWAN SEMICONDUCTOR
15.18.1 COMPANY SNAPSHOT
15.18.2 REVENUE ANALYSIS
15.18.3 PRODUCT PORTFOLIO
15.18.4 RECENT DEVELOPMENTS
15.19 TOTALCAE
15.19.1 COMPANY SNAPSHOT
15.19.2 SOLUTION PORTFOLIO
15.19.3 RECENT DEVELOPMENTS
15.2 TYAN
15.20.1 COMPANY SNAPSHOT
15.20.2 PRODUCT PORTFOLIO
15.20.3 RECENT DEVELOPMENTS
15.21 VECTOR INFORMATIK GMBH
15.21.1 COMPANY SNAPSHOT
15.21.2 PRODUCT PORTFOLIO
15.21.3 RECENT DEVELOPMENTS
16 QUESTIONNAIRE
17 RELATED REPORTS
Liste des tableaux
TABLE 1 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 2 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 3 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 4 GLOBAL SOFTWARE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 5 GLOBAL SERVICES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 6 GLOBAL SERVICES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 7 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL, 2021-2030 (USD THOUSAND)
TABLE 8 GLOBAL ON PREMISES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 9 GLOBAL CLOUD IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 10 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY ORGANIZATION SIZE, 2021-2030 (USD THOUSAND)
TABLE 11 GLOBAL LARGE ENTERPRISES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 12 GLOBAL LARGE ENTERPRISES IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL, 2021-2030 (USD THOUSAND)
TABLE 13 GLOBAL SMALL AND MEDIUM SIZE ENTERPRISES (SMES) IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 14 GLOBAL SMALL AND MEDIUM SIZE ENTERPRISES (SMES) IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY DEPLOYMENT MODEL, 2021-2030 (USD THOUSAND)
TABLE 15 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY COMPUTATION TYPE, 2021-2030 (USD THOUSAND)
TABLE 16 GLOBAL PARALLEL COMPUTING IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 17 GLOBAL DISTRIBUTED COMPUTING IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 18 GLOBAL EXASCALE COMPUTING IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 19 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY PLATFORM, 2021-2030 (USD THOUSAND)
TABLE 20 GLOBAL SAFETY & MOTION HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 21 GLOBAL AUTONOMOUS DRIVING HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 22 GLOBAL BODY HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 23 GLOBAL COCKPIT HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 24 GLOBAL CROSS-DOMAIN HPC IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 25 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY VEHICLE TYPE, 2021-2030 (USD THOUSAND)
TABLE 26 GLOBAL PASSENGER CAR IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 27 GLOBAL PASSENGER CAR IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 28 GLOBAL PASSENGER CAR IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 29 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 30 GLOBAL LIGHT COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 31 GLOBAL LIGHT COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 32 GLOBAL LIGHT COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 33 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 34 GLOBAL HEAVY COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY REGION, 2021-2030 (USD THOUSAND)
TABLE 35 GLOBAL HEAVY COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 36 GLOBAL HEAVY TRUCK IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
TABLE 37 GLOBAL HEAVY COMMERCIAL VEHICLE IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY OFFERING, 2021-2030 (USD THOUSAND)
TABLE 38 GLOBAL SOLUTION IN HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET, BY TYPE, 2021-2030 (USD THOUSAND)
Liste des figures
FIGURE 1 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: SEGMENTATION
FIGURE 2 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: DATA TRIANGULATION
FIGURE 3 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: DROC ANALYSIS
FIGURE 4 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: GLOBAL VS REGIONAL MARKET ANALYSIS
FIGURE 5 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY RESEARCH ANALYSIS
FIGURE 6 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: INTERVIEW DEMOGRAPHICS
FIGURE 7 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: DBMR MARKET POSITION GRID
FIGURE 8 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: VENDOR SHARE ANALYSIS
FIGURE 9 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: MULTIVARIATE MODELING
FIGURE 10 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: OFFERING TIMELINE CURVE
FIGURE 11 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: SEGMENTATION
FIGURE 12 INCREASING COMPLEXITY AND PERFORMANCE REQUIREMENT IN ELECTRONICS ARCHITECTURE OF A VEHICLE IS EXPECTED TO DRIVE THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET IN THE FORECAST PERIOD OF 2023 TO 2030
FIGURE 13 SOLUTIONS SEGMENT IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET IN 2023 & 2030
FIGURE 14 ASIA-PACIFIC IS EXPECTED TO DOMINATE IN THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET IN THE FORECAST PERIOD OF 2023 TO 2030
FIGURE 15 EUROPE IS THE FASTEST GROWING MARKET FOR HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE IN THE FORECAST PERIOD OF 2023 TO 2030
FIGURE 16 COMPANY SHARE ANALYSIS AT COUNTRY LEVEL
FIGURE 17 COMPANY COMPARISON
FIGURE 18 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF THE GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET
FIGURE 19 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY OFFERING, 2022
FIGURE 20 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY DEPLOYMENT MODEL, 2022
FIGURE 21 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY ORGANIZATION SIZE, 2022
FIGURE 22 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COMPUTATION TYPE, 2022
FIGURE 23 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY PLATFORM, 2022
FIGURE 24 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY VEHICLE TYPE, 2022
FIGURE 25 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: SNAPSHOT (2022)
FIGURE 26 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COUNTRY (2022)
FIGURE 27 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COUNTRY (2023 & 2030)
FIGURE 28 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY COUNTRY (2022 & 2030)
FIGURE 29 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: BY REGION (2023-2030)
FIGURE 30 GLOBAL HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
FIGURE 31 ASIA-PACIFIC HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
FIGURE 32 NORTH AMERICA HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
FIGURE 33 EUROPE HIGH PERFORMANCE COMPUTING FOR AUTOMOTIVE MARKET: COMPANY SHARE 2022 (%)
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.