Global Data Science Platform Market
Taille du marché en milliards USD
TCAC :
%

![]() |
2024 –2031 |
![]() |
USD 158.59 Billion |
![]() |
USD 1,216.19 Billion |
![]() |
|
![]() |
|
Segmentation du marché mondial des plateformes de science des données, par type de composant (plateforme, services, support et maintenance, conseil, déploiement et intégration), division fonctionnelle (marketing, ventes, logistique, finances et comptabilité, support client, opérations commerciales et autres), modèle de déploiement (sur site et dans le cloud), taille de l'organisation (petites et moyennes entreprises (PME), grandes entreprises), application de l'utilisateur final (banque, services financiers et assurances (BFSI), télécommunications et informatique, vente au détail et commerce électronique, santé et sciences de la vie, fabrication, énergie et services publics, médias et divertissement, transport et logistique, gouvernement et autres) - Tendances et prévisions de l'industrie jusqu'en 2031
Analyse du marché des plateformes de science des données
Le marché des plateformes de science des données connaît une croissance rapide en raison de l'intégration de technologies avancées telles que l'intelligence artificielle (IA), l'apprentissage automatique (ML) et le cloud computing . L'une des dernières méthodes à l'origine du marché est l'utilisation d'outils AutoML (apprentissage automatique automatisé), qui simplifient le processus de création de modèles, permettant aux entreprises moins expertes d'exploiter efficacement l'IA. Ces plateformes permettent aux data scientists de se concentrer sur l'innovation, tandis que l'automatisation gère les tâches répétitives.
Les plateformes de science des données basées sur le cloud, telles que Google Cloud AI et AWS SageMaker, favorisent encore davantage l'évolutivité et la rentabilité. En utilisant le cloud, les entreprises peuvent accéder à une immense puissance de calcul à la demande, garantissant ainsi le traitement rapide de vastes ensembles de données.
Une autre avancée réside dans l’adoption d’outils collaboratifs qui permettent aux équipes de travailler simultanément sur des projets, ce qui accroît l’efficacité et réduit le délai de mise sur le marché des solutions d’IA. Ces plateformes s’intègrent souvent aux écosystèmes de données existants, ce qui les rend accessibles à un large éventail de secteurs tels que la santé, la finance et la vente au détail. À mesure que les organisations prennent conscience de la valeur des informations basées sur les données, la demande de plateformes complètes de science des données devrait augmenter considérablement, stimulant ainsi la croissance du marché.
Taille du marché des plateformes de science des données
Français La taille du marché mondial des plateformes de science des données était évaluée à 158,59 milliards USD en 2023 et devrait atteindre 1 216,19 milliards USD d'ici 2031, avec un TCAC de 29,00 % au cours de la période de prévision de 2024 à 2031. En plus des informations sur le marché telles que la valeur du marché, le taux de croissance, les segments de marché, la couverture géographique, les acteurs du marché et le scénario du marché, le rapport de marché organisé par l'équipe de recherche sur le marché de Data Bridge comprend une analyse approfondie des experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse du pilon.
Tendances du marché des plateformes de science des données
« L’essor de l’apprentissage automatique automatisé (AutoML) »
L'essor de l'apprentissage automatique automatisé (AutoML) est une tendance majeure qui stimule la croissance du marché des plateformes de science des données. Cette technologie simplifie et accélère le processus de développement de modèles, permettant aux utilisateurs ayant une expertise limitée en science des données de créer des modèles prédictifs. Par exemple, en janvier 2023, Science Applications International Corp. a présenté la plateforme de science des données « Tenjin », une solution polyvalente qui prend en charge le développement low-code ou full-code pour les applications d'IA et d'apprentissage automatique. Propulsée par Dataiku, Tenjin facilite l'ensemble du cycle de vie du développement de modèles d'IA et de ML, du déploiement à la formation et à l'automatisation, ainsi que des outils avancés de visualisation des données. Cette plateforme vise à simplifier les processus complexes, rendant l'IA accessible à un plus large éventail d'entreprises.
Portée du rapport et segmentation du marché des plateformes de science des données
Attributs |
Informations clés sur le marché des plateformes de science des données |
Segments couverts |
|
Pays couverts |
États-Unis, Canada et Mexique en Amérique du Nord, Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie, Reste de l'Europe en Europe, Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique (APAC) en Asie-Pacifique (APAC), Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël, Reste du Moyen-Orient et de l'Afrique (MEA) en tant que partie du Moyen-Orient et de l'Afrique (MEA), Brésil, Argentine et Reste de l'Amérique du Sud en tant que partie de l'Amérique du Sud |
Principaux acteurs du marché |
IBM (États-Unis), DataRobot Inc. (États-Unis), apheris AI GmbH (Allemagne), The Digital Talent Ecosystem (États-Unis), Databand (Israël), dotData (États-Unis), Explorium Inc. (États-Unis), Noogata (Israël), Tecton Inc. (États-Unis), Spell Designs Pty Ltd (États-Unis), Arrikto Inc. (États-Unis), Iterative (États-Unis), Google Inc (États-Unis), Microsoft (États-Unis), SAS Institute Inc. (États-Unis), Amazon Web Services, Inc. (États-Unis), The MathWorks, Inc. (États-Unis), Cloudera Inc. (États-Unis), Teradata (États-Unis), TIBCO Software Inc. (États-Unis), ALTERYX, INC. (États-Unis), RapidMiner (États-Unis), Databricks (États-Unis), Snowflake Inc. (États-Unis), H2O.ai (États-Unis), Altair Inc. (États-Unis), Anaconda Inc. (États-Unis), SAP SE (États-Unis), Domino Data Lab Inc. (États-Unis) et Dataiku (États-Unis) |
Opportunités de marché |
|
Ensembles d'informations sur les données à valeur ajoutée |
Outre les informations sur le marché telles que la valeur marchande, le taux de croissance, les segments de marché, la couverture géographique, les acteurs du marché et le scénario du marché, le rapport de marché organisé par l'équipe de recherche sur le marché de Data Bridge comprend une analyse approfondie des experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse au pilon. |
Définition du marché des plateformes de science des données
Une plateforme de science des données est un environnement intégré qui fournit des outils, des bibliothèques et une infrastructure permettant aux data scientists de développer, de gérer et d'exécuter des projets axés sur les données. Elle permet aux utilisateurs de collecter, d'analyser et de visualiser de grands ensembles de données tout en facilitant la collaboration entre les équipes. Ces plateformes prennent souvent en charge divers langages de programmation (tels que Python, R et SQL), des algorithmes d'apprentissage automatique et des pipelines de données pour une création et un déploiement efficaces des modèles. Les plateformes de science des données offrent également des fonctionnalités telles que le contrôle des versions, l'automatisation et l'évolutivité, ce qui permet aux organisations d'exploiter plus facilement les informations issues des données de manière structurée et reproductible pour la prise de décision.
Dynamique du marché des plateformes de science des données
Conducteurs
- Demande de prise de décision basée sur les données
Le recours croissant à la prise de décision basée sur les données est l’un des principaux moteurs du marché des plateformes de science des données. Les organisations de tous les secteurs se tournent vers l’utilisation des informations sur les données pour améliorer la stratégie, améliorer l’engagement client et rationaliser les opérations. Les plateformes de science des données permettent aux entreprises de traiter et d’analyser efficacement de vastes ensembles de données, ce qui conduit à des décisions plus précises et plus éclairées. Par exemple, en octobre 2023, GoodData Corporation a dévoilé sa dernière plateforme d’analyse de données basée sur l’IA, conçue pour améliorer les flux de travail d’apprentissage automatique (ML), d’IA et de veille stratégique (BI). Cette plateforme intègre diverses fonctionnalités d’IA générative, notamment un assistant virtuel qui fournit des résumés et des informations. En rationalisant les processus de découverte et de développement des données, elle permet aux utilisateurs de prendre des décisions éclairées plus rapidement, améliorant ainsi l’efficacité et l’efficience dans les environnements axés sur les données.
- Croissance du Big Data
L’augmentation exponentielle des données générées par diverses sources telles que les appareils IoT, les plateformes de médias sociaux et les activités de commerce électronique est un facteur clé du marché des plateformes de science des données. Ces vastes volumes de données structurées et non structurées nécessitent des plateformes robustes pour un stockage, un traitement et une analyse efficaces. Par exemple, en janvier 2024, Databricks a lancé une nouvelle plateforme de business intelligence spécialement conçue pour les opérateurs de télécommunications et les fournisseurs de services réseau (NSP). Cette plateforme innovante permet à ces entreprises d’avoir une vue complète de leurs réseaux, de leurs opérations et de leurs interactions avec leurs clients. Il est important de noter qu’elle garantit la confidentialité des données et protège la propriété intellectuelle confidentielle, ce qui permet aux entreprises de télécommunications de prendre des décisions éclairées tout en maintenant des normes de sécurité élevées dans leurs opérations.
Opportunités
- Innovation Open Source
L’innovation open source améliore considérablement le marché des plateformes de science des données en fournissant des outils accessibles qui favorisent la collaboration et le développement rapide. Des plateformes telles qu’Apache Spark et TensorFlow illustrent cette tendance, en permettant aux data scientists de tirer parti de bibliothèques robustes sans frais de licence élevés. À mesure que les entreprises recherchent des solutions rentables pour l’apprentissage automatique et le traitement du big data, elles adoptent de plus en plus ces cadres open source, ce qui entraîne une augmentation des contributions et des améliorations de la communauté. Cet environnement collaboratif accélère non seulement le développement de nouvelles fonctionnalités, mais attire également un plus grand vivier de talents, créant ainsi des opportunités pour les entreprises d’innover et de conserver des avantages concurrentiels dans un paysage axé sur les données.
- Progrès dans l'analyse prédictive
L'essor de l'analyse prédictive dans les secteurs de la santé, de la finance et de la vente au détail présente des opportunités importantes sur le marché des plateformes de science des données. Dans le domaine de la santé, les modèles prédictifs sont utilisés pour prévoir les résultats des patients et optimiser les plans de traitement, comme le montrent des outils tels qu'IBM Watson Health. Dans le domaine financier, les entreprises exploitent l'analyse prédictive pour la notation de crédit et la détection des fraudes, comme l'illustrent les algorithmes de notation avancés de FICO. Par exemple, en octobre 2022, IBM Corporation a lancé la bibliothèque de bandes Diamondback, une solution de stockage avancée utilisant la technologie LTO. Ce produit innovant dispose d'une capacité impressionnante allant jusqu'à 27 pétaoctets (Po) de stockage de données dans un seul rack de serveur. Le Diamondback est conçu pour répondre aux demandes croissantes de stockage de données, offrant évolutivité et fiabilité aux organisations qui ont besoin de gérer de grandes quantités d'informations de manière sûre et efficace. Alors que les organisations reconnaissent la valeur des informations prédictives pour la prise de décision, la demande de plateformes de science des données sophistiquées capables de gérer une modélisation et des prévisions complexes continue de croître, créant des perspectives de marché lucratives.
Contraintes/Défis
- Préoccupations relatives à la confidentialité et à la sécurité des données
Les préoccupations en matière de confidentialité et de sécurité des données freinent considérablement le marché des plateformes de science des données. Les organisations s’appuyant de plus en plus sur l’analyse des données, elles sont confrontées à une pression croissante pour se conformer à des réglementations strictes telles que le RGPD et le CCPA. Le non-respect peut entraîner de lourdes amendes et nuire à la réputation, ce qui incite les organisations à se montrer prudentes dans leurs pratiques de traitement des données. Cette appréhension limite l’adoption de solutions avancées de science des données, car les entreprises peuvent privilégier la sécurité au détriment de l’innovation. En outre, la nécessité de mesures de sécurité robustes peut augmenter les coûts et la complexité de la mise en œuvre, ce qui dissuade encore davantage les organisations d’investir dans de nouvelles plateformes de science des données et ralentit la croissance globale du marché.
- Manque de professionnels qualifiés
Le manque de professionnels qualifiés freine considérablement le marché des plateformes de science des données. L’évolution rapide des technologies de science des données a entraîné un manque de talents considérable, de nombreuses organisations ayant du mal à trouver des data scientists et des analystes qualifiés. Cette pénurie entrave l’utilisation efficace des plateformes de science des données avancées, ce qui entraîne une sous-performance des initiatives d’analyse. Les entreprises investissent souvent dans des outils sophistiqués mais ne peuvent pas maximiser leur potentiel en raison d’une expertise insuffisante dans l’interprétation des données et l’obtention d’informations exploitables. Par conséquent, ce déficit de talents freine l’innovation, ralentit les délais des projets et limite en fin de compte la croissance du marché, car les entreprises ne parviennent pas à exploiter pleinement les capacités de science des données.
Ce rapport de marché fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l'analyse des importations et des exportations, l'analyse de la production, l'optimisation de la chaîne de valeur, la part de marché, l'impact des acteurs du marché national et local, les opportunités d'analyse en termes de poches de revenus émergentes, les changements dans la réglementation du marché, l'analyse stratégique de la croissance du marché, la taille du marché, la croissance des catégories de marché, les niches d'application et la domination, les approbations de produits, les lancements de produits, les expansions géographiques, les innovations technologiques sur le marché. Pour obtenir plus d'informations sur le marché, contactez Data Bridge Market Research pour un briefing d'analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.
Portée du marché des plateformes de science des données
Le marché est segmenté en fonction du type de composant, de la division fonctionnelle, du modèle de déploiement, de la taille de l'organisation et de l'application de l'utilisateur final. La croissance parmi ces segments vous aidera à analyser les segments de croissance faibles dans les industries et fournira aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.
Type de composant
- Plate-forme
- Services
Services professionnels
- Assistance et maintenance
- Consultant
- Déploiement et intégration
Services gérés
Division des fonctions
- Commercialisation
- Ventes
- Logistique
- Finances et Comptabilité
- Assistance clientèle
- Opérations commerciales
- Autres
Modèle de déploiement
- Sur site
- Basé sur le cloud
Taille de l'organisation
- Petites et moyennes entreprises (PME)
- Grandes entreprises
Application pour l'utilisateur final
- Banque, services financiers et assurances (BFSI)
- Télécom et informatique
- Commerce de détail et commerce électronique
- Santé et sciences de la vie
- Fabrication
- Énergie et services publics
- Médias et divertissement
- Transport et logistique
- Gouvernement
- Autres
Analyse régionale du marché des plateformes de science des données
Le marché est analysé et des informations sur la taille et les tendances du marché sont fournies par type de composant, division fonctionnelle, modèle de déploiement, taille de l'organisation et application de l'utilisateur final, comme référencé ci-dessus.
The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America is expected to dominate the data science platform market due to the presence of a well-established infrastructure and low labor costs in the advancing countries. Moreover, the effective after-sale services offered by manufacturers within the economies are further estimated to accelerate the expansion over the forecast period.
Asia-Pacific is expected to witness significant growth during the forecast period due to rapid growth in the oil and gas exploration operation in the area within the region. China's large base for producing electronics items makes it a significant contributor to the regional market expansion.
The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Data Science Platform Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Data Science Platform Market Leaders Operating in the Market Are:
- IBM (U.S.)
- DataRobot Inc., (U.S.)
- apheris AI GmbH (Germany)
- The Digital Talent Ecosystem (U.S.)
- Databand (Israel)
- dotData (U.S.)
- Explorium Inc., (U.S.)
- Noogata (Israel)
- Tecton Inc., (U.S.)
- Spell Designs Pty Ltd (U.S.)
- Arrikto Inc., (U.S.)
- Iterative (U.S.)
- Google Inc (U.S.)
- Microsoft (U.S.)
- SAS Institute Inc., (U.S.)
- Amazon Web Services, Inc. (U.S.)
- The MathWorks, Inc. (U.S.)
- Cloudera Inc., (U.S.)
- Teradata (U.S.)
- TIBCO Software Inc. (U.S.)
- ALTERYX, INC. (U.S.)
- RapidMiner (U.S.),
- Databricks (U.S.)
- Snowflake Inc., (U.S.)
- H2O.ai (U.S.)
- Altair Inc., (U.S.)
- Anaconda Inc., (U.S.)
- SAP SE (U.S.)
- Domino Data Lab Inc., (U.S.)
- Dataiku (U.S.)
Latest Developments in Data Science Platform Market
- In June 2024, IBM Corporation announced a strategic collaboration with Telefónica Tech aimed at driving the adoption of cutting-edge Artificial Intelligence (AI), analytics, and data governance solutions. This partnership seeks to address the evolving needs of enterprises, enabling them to leverage advanced technologies for improved decision-making, operational efficiency, and enhanced customer experiences in an increasingly complex business environment
- In March 2024, Microsoft revealed a collaboration with NVIDIA focused on enhancing healthcare and life sciences innovation through cloud AI and accelerated computing technologies. This partnership aims to revolutionize patient care by expediting access to precision medicine and AI-driven diagnostics. The initiative is expected to significantly advance the healthcare industry by providing faster, more accurate solutions for diagnosing and treating patients, ultimately improving health outcomes
- In January 2023, Science Applications International Corp. introduced the "Tenjin" data science platform, a versatile solution that supports low-code to full-code development for AI and machine learning applications. Powered by Dataiku, Tenjin facilitates the entire lifecycle of AI and ML model development, from deployment to training and automation, along with advanced data visualization tools. This platform aims to simplify complex processes, making AI accessible to a wider range of businesses
- In October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently
- In June 2022, SAS Institute expanded its capabilities by acquiring Kamakura Corporation, enhancing its portfolio with integrated risk solutions. This acquisition focuses on delivering specialized professional services in Asset Liability Management (ALM) and other financial sectors, including banking. By combining resources and expertise, SAS aims to offer comprehensive solutions that address complex risk management challenges, helping organizations make informed financial decisions and navigate market uncertainties effectively
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.