Global Ai In Patient Management Market
Taille du marché en milliards USD
TCAC : %
Période de prévision |
2024 –2031 |
Taille du marché (année de référence) |
USD 1.99 Billion |
Taille du marché (année de prévision) |
USD 15.13 Billion |
TCAC |
|
Principaux acteurs du marché |
>Marché mondial de l'IA dans la gestion des patients, par technologie (apprentissage automatique, PNL), application (analyse des dossiers médicaux, analyse des modèles, analyse basée sur la localisation, rendez-vous basé sur l'historique, autres), utilisateur final (hôpitaux, centres de diagnostic, centres de chirurgie ambulatoire , autres) - Tendances et prévisions de l'industrie jusqu'en 2031.
Analyse et taille du marché de l'IA dans la gestion des patients
L’intelligence artificielle (IA) dans la gestion des patients évolue rapidement et vise à améliorer la qualité des soins, à réduire les coûts et à améliorer l’expérience globale des patients. Pour ce faire, les professionnels de la santé utilisent l’automatisation et des informations basées sur les données, qui les aident à prendre des décisions et à interagir avec les patients. Tous les logiciels de gestion des patients utilisés par les établissements de santé utilisent l’intelligence artificielle pour faciliter la surveillance, le diagnostic et le traitement. L’augmentation des données de santé et la complexité des ensembles de données sont les principaux facteurs qui stimulent l’expansion du marché et nécessitent l’utilisation de l’IA dans les logiciels de gestion des patients.
Data Bridge Market Research analyse que le marché mondial de l'IA dans la gestion des patients, qui était de 1,99 milliard USD en 2023, devrait atteindre 15,13 milliards USD d'ici 2031 et devrait connaître un TCAC de 28,90 % au cours de la période de prévision. Les « hôpitaux » représentent la plus grande part de marché dans le segment des utilisateurs finaux de l'IA sur le marché de la gestion des patients en raison des avantages qu'elle offre dans la gestion de données de patients volumineuses. En plus des informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également des analyses approfondies d'experts, l'épidémiologie des patients, l'analyse du pipeline, l'analyse des prix et le cadre réglementaire.
Portée du rapport et segmentation du marché
Rapport métrique |
Détails |
Période de prévision |
2024 à 2031 |
Année de base |
2023 |
Années historiques |
2022 (personnalisable pour 2016-2021) |
Unités quantitatives |
Chiffre d'affaires en milliards USD, volumes en unités, prix en USD |
Segments couverts |
Par technologie (apprentissage automatique, PNL), application (analyse des dossiers médicaux, analyse des modèles, analyse basée sur la localisation, prise de rendez-vous basée sur l'historique, autres), utilisateur final (hôpitaux, centres de diagnostic, centres de chirurgie ambulatoire, autres) |
Pays couverts |
États-Unis, Canada, Mexique, Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie, Reste de l'Europe, Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, Reste de l'Asie-Pacifique, Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël, Reste du Moyen-Orient et de l'Afrique, Brésil, Argentine, Reste de l'Amérique du Sud. |
Acteurs du marché couverts |
Welltok Inc (États-Unis), Intel Corporation (États-Unis), NVIDIA Corporation (États-Unis), Google LLC (États-Unis), International Business Machines Corporation (IBM) (États-Unis), Microsoft Corporation (États-Unis), Geneva Vision, Inc. (États-Unis), Enlitic, Inc. (États-Unis), Next IT Corporation (États-Unis), iCarbonX (Chine), Octopus Health (États-Unis), Sweetech Health Ltd (Royaume-Uni), Superwise.ai (États-Unis) |
Market Opportunities |
|
Market Definition
AI in patient management refers to the application of artificial intelligence technologies to streamline and enhance various aspects of healthcare delivery and patient care. This includes tasks such as automating administrative processes, analyzing vast datasets for personalized treatment plans, and facilitating remote patient monitoring. AI in patient management utilizes machine learning algorithms to interpret medical data, aiding in diagnostics, predicting disease outcomes, and optimizing treatment strategies. In addition, it can improve the efficiency of healthcare workflows, reduce administrative burdens on healthcare professionals, and contribute to the development of precision medicine by tailoring interventions based on individual patient characteristics. The integration of AI technologies also holds the potential to transform patient-doctor interactions, support telemedicine initiatives, and advance overall healthcare outcomes through data-driven insights and proactive healthcare management.
Global AI in Patient Management Market Dynamics
Drivers
- Rising Demand for Efficiency and Automation
AI streamlines healthcare workflows by automating routine tasks, such as appointment scheduling, administrative paperwork, and billing processes. This reduces administrative burdens on healthcare professionals, allowing them to allocate more time to patient interaction and care delivery. The result is improved overall operational efficiency within healthcare institutions.
- Advancements in data analytics and insights
AI's data analytics capabilities enable healthcare providers to shift through vast amounts of patient data, including electronic health records (EHRs), to extract meaningful insights. This analysis goes beyond human capacity, identifying patterns, predicting disease risks, and offering personalized treatment recommendations. These data-driven insights enhance clinical decision-making, ultimately leading to more effective and tailored patient care.
- Rise in remote patient monitoring
AI-driven remote monitoring utilizes connected devices to track patients' health in real-time. Wearable sensors and other IoT devices collect data on vital signs, medication adherence, and overall health trends. AI algorithms analyze this information, providing healthcare professionals with timely alerts for potential issues. This proactive approach enables early intervention, reduces hospital readmissions, and fosters a more preventive and personalized healthcare model.
Opportunities
- Precision medicine advancements
AI is poised to revolutionize precision medicine by analyzing vast datasets, including genetic information, lifestyle factors, and environmental influences. By identifying intricate patterns and correlations within this data, AI algorithms can offer tailored treatment plans that cater to an individual's unique genetic makeup and health profile. This personalized approach holds the promise of optimizing treatment efficacy, reducing adverse reactions, and accompanying in a new era of targeted therapies.
- Rise in predictive healthcare analytics
The integration of AI in predictive analytics enables healthcare professionals to anticipate disease trends, identify at-risk populations, and forecast individual health trajectories. By analyzing historical data and real-time information, AI models can provide valuable insights for preventive interventions, early detection of health issues, and the optimization of resource allocation. This proactive approach has the potential to significantly improve public health outcomes, reduce healthcare costs, and shift the focus from reactive to preventive healthcare strategies.
Restraints/Challenges
- Data privacy and security concerns
Protecting patient data from unauthorized access, breaches, and misuse is a critical challenge. The integration of AI in patient management necessitates robust cybersecurity measures and strict adherence to privacy regulations like HIPAA. Balancing the potential benefits of AI with the imperative to safeguard patient confidentiality requires ongoing diligence and investment in secure data handling practices.
- Interoperability issues
Healthcare systems often use diverse platforms and technologies that struggle to communicate seamlessly. Interoperability challenges hinder the efficient exchange of patient data, impeding the effectiveness of AI applications. Standardizing data formats and protocols is essential to bridge these interoperability gaps, promoting a cohesive healthcare ecosystem where AI can contribute to holistic patient management.
This AI in patient management market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the AI in patient management market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Global AI in Patient Management Market Scope
The AI in patient management market is segmented on the basis of technology, application and end user. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Technology
- Machine Leaning
- NLP
Application
- Health Record Analysis
- Pattern Analysis
- Location Based Analysis
- History Based Appointment
- Others
End User
- Hospitals
- Diagnostic Centers
- Ambulatory Surgical Centers
- Others
Global AI in Patient Management Market Regional Analysis/Insights
The AI in patient management market is analyzed and market size insights and trends are provided by country, technology, application, and end user as referenced above.
The countries covered in the AI in patient management market report are U.S., Canada, Mexico, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, rest of Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, rest of Asia-Pacific, Saudi Arabia, U.A.E., South Africa, Egypt, Israel, rest of Middle East and Africa, Brazil, Argentina and rest of South America.
North America is expected to dominate the market and is expected to grow with a highest CAGR in the forecast period due to well-developed healthcare system and rising demand for management of large patient data.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points like down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Competitive Landscape and AI in Patient Management Market Share Analysis
The AI in patient management market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to AI in patient management market.
Some of the major players operating in the AI in patient management market are:
- Welltok Inc (U.S.)
- Intel Corporation (U.S.)
- NVIDIA Corporation (U.S.)
- Google LLC (U.S.)
- International Business Machines Corporation (IBM) (U.S.)
- Microsoft Corporation (U.S.)
- Geneva Vision, Inc. (États-Unis)
- Enlitic, Inc. (États-Unis)
- Next IT Corporation (États-Unis)
- iCarbonX (Chine)
- Octopus Health (États-Unis)
- Sweetech Health Ltd (Royaume-Uni)
- Superwise.ai (États-Unis)
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.