Une équipe de chercheurs de la bioinformatique structurale et de la biologie des réseaux de l'IRB Barcelone a développé un outil qui prédit l'activité biologique des composés chimiques, ce qui est la clé pour évaluer leur potentiel thérapeutique. Les chercheurs ont utilisé des réseaux de neurones artificiels pour obtenir des données expérimentales sur un million de composés et ont développé de nombreux outils pour évaluer chaque type de molécule. L'équipe de bioinformatique structurale et de biologie des réseaux, dirigée par le Dr Patrick Aloy, chercheur à l'ICREA, a utilisé des modèles informatiques d'apprentissage automatique approfondi pour compléter la collecte d'informations sur l'activité biologique d'environ 1 million de molécules et a introduit un outil pour prédire l'activité biologique de n'importe quelle molécule, même lorsque les données expérimentales ne sont pas disponibles.
Cette nouvelle méthode est basée sur le Chemical Checker, qui est de loin la plus grande base de données de profils de bioactivité pour les faux médicaments développée par le même laboratoire et publiée en 2020. La base de données collecte des informations sur 25 zones bioactives pour chaque molécule. Ces domaines sont liés à la structure chimique de la molécule, à la cible avec laquelle elle interagit et aux altérations qu'elle provoque au niveau clinique ou cellulaire. Cependant, pour la plupart des composés, ces informations détaillées sur le mécanisme d’action sont incomplètes. Cela signifie que pour un composé donné, il peut y avoir une ou deux zones d'informations biologiquement actives disponibles, mais pas toutes les 25. Avec cette nouvelle découverte en cours de développement, les chercheurs compareraient toutes les informations expérimentales disponibles avec des techniques d'apprentissage automatique approfondi pour compléter tous les profils d'activité. pour tous les composés, de la chimie au niveau clinique.
Le nouvel outil nous permet également de prédire l'espace d'activité biologique de nouvelles molécules, ce qui est essentiel pour le processus de découverte de médicaments car nous pouvons sélectionner les candidats les plus appropriés et éliminer ceux qui ne fonctionnent pas pour une raison ou d'autres.