La reconnaissance optique de caractères (OCR), une technique de numérisation bien établie, est couramment utilisée pour convertir le texte des documents numérisés en un formulaire consultable et modifiable sur ordinateur. Mais il ne peut pas numériser d'autres documents tels que des manuscrits musicaux et d'autres types de manuscrits. Une nouvelle approche développée par une équipe de l'Université Bina Nusantara, située à Jakarta, en Indonésie, utilise l'apprentissage automatique profond et un réseau neuronal convolutionnel formé pour reconnaître les nuances de la notation musicale écrite sur les manuscrits.
Le système nécessite que la clé, la portée et la tonalité musicale soient en place, mais celles-ci peuvent facilement être attribuées dans un modèle. Lors de la conversion d'un manuscrit numérisé, il détecte la position de chaque note sur la portée pour définir la hauteur. L'étape suivante utilise un algorithme parallèle pour détecter la durée de chaque note et identifier la position des silences, des silences et d'autres caractéristiques similaires dans un manuscrit. Une fois entièrement numérisé, il est trivial avec les logiciels actuels de « jouer » le manuscrit avec tous les sons instrumentaux possibles sur l'ordinateur ou même de corréler une partition lyrique avec la musique et de laisser l'ordinateur chanter la chanson. Les scientifiques pensent qu’une fois mûri, l’OMR aurait de nombreuses applications dans l’interprétation musicale, l’éducation musicale et l’archivage des archives de manuscrits musicaux. L'équipe suggère que leur approche pourrait permettre aux développeurs d'applications logicielles d'écrire un programme pour smartphones ou tablettes qui permettrait à quiconque, par exemple, de numériser rapidement une partition et d'effectuer une OMR sur ce manuscrit.