L'intelligence artificielle, ou IA, est désormais utilisée dans presque tous les secteurs, et les gens sont très dépendants de l'apprentissage automatique et de l'intelligence artificielle, car ils réduisent une grande partie de la charge de travail. L’industrie des puces se développe très rapidement, tout comme sa production, car de nombreuses industries l’utilisent à grande échelle. Actuellement, les puces informatiques sont fabriquées à l’aide d’un type spécial de technologie appelée dépôt de couche atomique (ALD), qui a la capacité de créer des films aussi fins qu’un atome d’épaisseur. Cette technologie est très utilisée pour développer des dispositifs à semi-conducteurs, mais elle trouve également des applications dans les batteries au lithium, les cellules solaires et d’autres domaines liés à l’énergie.
Aujourd'hui, les fabricants s'appuient de plus en plus sur ALD pour fabriquer de nouveaux types de films, mais il faut du temps pour comprendre comment affiner le processus pour chaque nouveau matériau. Une partie du problème réside dans le fait que les chercheurs utilisent principalement des essais et des erreurs pour déterminer les conditions de croissance optimales. Cependant, une étude récemment publiée, l’une des premières dans ce domaine scientifique, suggère que l’utilisation de l’intelligence artificielle (IA) pourrait être plus efficace. Dans l'étude ACS Applied Materials and Interfaces, des chercheurs du Laboratoire national d'Argonne du Département de l'énergie (DOE) de l'USD décrivent plusieurs approches basées sur l'IA pour l'optimisation autonome des processus AML. Leurs travaux décrivent les forces et les faiblesses relatives de chaque approche, ainsi que les informations qui peuvent être utilisées pour développer de nouveaux processus de manière plus efficace et plus économique. "Tous ces algorithmes offrent un moyen beaucoup plus rapide de converger vers des combinaisons optimales car vous ne perdez pas de temps à mettre un échantillon dans le réacteur, à le retirer, à prendre des mesures, etc. comme vous le feriez normalement aujourd'hui, une boucle en temps réel qui connecté au réacteur", a déclaré Angel YanguasGil, scientifique principal des matériaux d'Argonne, co-auteur de l'étude.