Les algorithmes ou programmes informatiques qui utilisent des données pour déterminer le plan d’action ou faire des prédictions sont appelés intelligence artificielle. Pour que l’ordinateur puisse examiner les données et parvenir à un jugement, les scientifiques peuvent développer un ensemble de règles ou d’instructions que l’ordinateur doit suivre. L'apprentissage automatique est une autre technique d'intelligence artificielle dans laquelle le système s'entraîne à évaluer et à comprendre les données. En conséquence, les algorithmes d’apprentissage automatique peuvent détecter des modèles difficiles à reconnaître pour l’œil ou le cerveau humain. De plus, ces algorithmes apprennent et interprètent mieux les données à mesure qu’ils sont exposés à des informations plus récentes.
Data Bridge Market Research analyse que l’intelligence artificielle sur le marché des soins de santé devrait connaître un TCAC de 51,37 % au cours de la période de prévision 2022-2029. Cela indique que la valeur marchande, qui était de 6,35 milliards de dollars en 2021, atteindrait 175,22 milliards de dollars d'ici 2029. En janvier 2019, Dartford et Gravesham NHS Trust au Royaume-Uni ont développé une technologie portable basée sur l'IA pour la surveillance des patients à leur sortie. des hôpitaux. En octobre 2019, care.ai et NVIDIA ont annoncé une collaboration visant à fournir une surveillance autonome des patients basée sur l'intelligence artificielle dans le domaine des soins de santé, en tirant parti de la plate-forme NVIDIA.
Pour en savoir plus sur l’étude, visitez :https://www.databridgemarketresearch.com/fr/reports/global-artificial-intelligence-in-healthcare-market
L’apprentissage profond, un sous-ensemble de l’apprentissage automatique, a également été appliqué par les chercheurs dans les applications d’imagerie du cancer. L'apprentissage profond fait référence à des algorithmes qui catégorisent les données selon des méthodes similaires à celles du cerveau humain. Les réseaux de neurones artificiels sont utilisés par les technologies d'apprentissage profond pour simuler la façon dont nos cellules cérébrales reçoivent, interprètent et répondent aux messages du reste de notre corps. Afin de déterminer si une masse est cancéreuse ou non, les médecins effectuent des tests d’imagerie du cancer. À quelle vitesse se développe-t-il s’il s’agit d’un cancer ? Quel est le spread ? Est-ce qu'il s'est rétabli depuis le traitement ? Selon des études, l’IA pourrait améliorer la rapidité, la précision et la fiabilité des réponses des professionnels de la santé. L’application de l’IA en oncologie peut être comprise à différentes étapes :
Fig.1 : Le rôle de l'IA en oncologie
- Trouver le cancer à un stade précoce Les personnes sont régulièrement examinées à la recherche d'indications de cancer ou de cellules susceptibles de se développer en cancer à l'aide de procédures telles que la mammographie et les tests Pap. L’objectif est d’identifier et de traiter le cancer tôt, avant qu’il ne se propage ou même ne se développe. Pour faciliter les tests de dépistage du cancer du sein et d’autres types de tests de dépistage du cancer, les scientifiques ont créé des technologies d’IA. Au cours des 20 dernières années, les algorithmes informatiques basés sur l’IA ont aidé les médecins à déchiffrer les mammographies, mais le domaine d’étude se développe rapidement. Un système d’IA a été développé par une équipe pour aider à décider à quelle fréquence les femmes devraient subir des tests de dépistage du cancer du sein. L'algorithme prédit la probabilité qu'une personne soit atteinte d'un cancer du sein au cours des cinq années suivantes en fonction des résultats de sa mammographie. Le modèle a obtenu de meilleurs résultats lors des tests que les méthodes actuelles de prédiction du risque de cancer du sein. Un algorithme d'apprentissage profond capable de reconnaître les précancers du col utérin qui doivent être retirés ou traités a été développé et testé par les chercheurs du NCI. Dans certaines situations à faibles ressources, les professionnels de la santé examinent le col de l'utérus avec une petite caméra pour rechercher un précancer du col. Cette approche est simple et durable ; cependant, il n'est pas très précis ni fiable. Plusieurs technologies d’IA ont été démontrées dans des études cliniques pour améliorer le diagnostic des adénomes, qui sont des tumeurs précancéreuses pouvant conduire au cancer du côlon. Certains spécialistes craignent que ces technologies d’IA n’obligent de nombreuses personnes à subir des traitements et des tests supplémentaires inutiles, car seule une faible proportion d’adénomes évolue en cancer.
- Détection et diagnostic du cancer- L’IA a la capacité d’aider à diagnostiquer le cancer plus tôt chez les personnes qui présentent déjà des signes. Par exemple, le modèle d'IA créé par le Dr Turkbey et ses collègues du Centre de recherche sur le cancer du NCI pourrait permettre aux radiologues d'identifier plus facilement le cancer de la prostate qui peut être agressif sur un type relativement nouveau d'IRM de la prostate appelé IRM multiparamétrique. Le modèle d'IA développé par l'équipe du NCI « pourrait minimiser le taux d'erreur et faciliter la courbe d'apprentissage pour les radiologues en exercice », selon le Dr Turkbey. Il a déclaré que le modèle d'IA pourrait agir comme « un expert virtuel » pour les radiologues moins expérimentés qui apprennent à utiliser l'IRM multiparamétrique. De nombreux modèles d’IA d’apprentissage profond ont été développés pour aider les cliniciens à détecter le cancer du poumon sur les tomodensitogrammes. Il existe une proportion importante de résultats de tests faussement positifs qui indiquent qu'une personne a un cancer du poumon alors qu'en réalité ce n'est pas le cas, car certaines anomalies non cancéreuses dans les poumons peuvent sembler très similaires au cancer sur les tomodensitogrammes. Théoriquement, l’IA pourrait réduire l’incidence des faux positifs et épargner à certains patients un stress inutile, des tests de suivi et des interventions chirurgicales en différenciant mieux le cancer du poumon des altérations non cancéreuses sur les images tomodensitométriques. Une équipe de chercheurs a créé un algorithme d’apprentissage profond pour découvrir le cancer du poumon et éviter d’autres altérations ressemblant au cancer.
- Choix de traitement contre le cancer- Les médecins utilisent également des tests d’imagerie pour recueillir des données cruciales sur le cancer, telles que la rapidité avec laquelle il se développe, s’il s’est propagé et s’il est susceptible de réapparaître après le traitement. Les médecins peuvent utiliser ces informations pour déterminer le meilleur plan d’action pour leurs patients. De nombreuses recherches indiquent que l’IA pourrait être capable d’extraire des données pronostiques à partir d’analyses d’imagerie de manière plus précise et plus complète que les humains ne le sont actuellement. Par exemple, un modèle d’apprentissage profond développé par le Dr Harmon et ses associés peut prédire le risque qu’un patient atteint d’un cancer de la vessie ait besoin de traitements supplémentaires en plus de la chirurgie. Selon les professionnels de la santé, les amas de cellules cancéreuses qui se sont déplacées hors de la vessie chez environ 50 % des personnes atteintes de tumeurs dans les muscles de la vessie (cancer de la vessie invasif sur le plan musculaire) sont trop petites pour être détectées par les méthodes conventionnelles. Ces cellules non détectées peuvent continuer à se multiplier après la chirurgie si elles ne sont pas éliminées, entraînant une récidive. Ces petits groupes peuvent être éliminés par chimiothérapie, empêchant ainsi la réapparition du cancer après la chirurgie. Cependant, comme l'ont démontré les essais cliniques, il pourrait être difficile de déterminer si les patients ont également besoin d'une chimiothérapie, selon le Dr Harmon. Le modèle analyse les images numériques du tissu tumoral d'origine pour déterminer s'il existe des groupements cancéreux microscopiques dans les ganglions lymphatiques environnants. Dans une étude publiée en 2020, le modèle d'apprentissage profond a surpassé la méthode conventionnelle de prédiction de la propagation du cancer de la vessie, basée sur plusieurs variables, notamment l'âge du patient et les caractéristiques spécifiques de la tumeur. De plus en plus, la constitution génétique du cancer du patient est étudiée pour déterminer la meilleure marche à suivre. Des chercheurs chinois ont développé un algorithme d’apprentissage profond pour prédire l’existence de mutations génétiques importantes dans les tissus cancéreux du foie à partir de photographies des tissus, ce que les pathologistes ne peuvent pas accomplir simplement en regardant les images. Les scientifiques qui ont créé l’algorithme ne savent pas comment il détermine quels changements génétiques sont présents dans la tumeur, ce qui fait de leur outil un exemple d’IA qui fonctionne de manière surprenante.
- L'IA en imagerie médicale- La prédiction du cancer peut bénéficier de l’IA et de l’apprentissage automatique. L’intelligence artificielle est capable de détecter avant qu’elles ne se propagent les tumeurs malignes déjà propagées et les personnes qui courent un risque élevé de les contracter. Cela permet aux professionnels de la santé de surveiller de près ces patients et d’agir rapidement si nécessaire. Regina Barzilay, une informaticienne du MIT, souhaitait tester l'intelligence artificielle (IA) pour prédire le cancer. L'équipe du MIT a examiné son potentiel pour identifier les femmes à risque de cancer du sein avant l'apparition de symptômes manifestes. Pour découvrir quelles patientes étaient atteintes d'un cancer, elle a rassemblé plus de 40 000 mammographies féminines sur une période de quatre ans, totalisant environ 89 000, et a comparé les analyses au registre national des tumeurs. Regina a ensuite utilisé une sélection de ces photos pour entraîner un algorithme d'apprentissage automatique (ML), une sorte d'IA, puis a utilisé cet algorithme pour générer des prédictions. L’algorithme a correctement identifié 30 % des futures patientes atteintes d’un cancer du sein comme appartenant à un groupe à haut risque. L’IA a diverses utilisations dans le domaine de l’imagerie médicale. L'identification et la catégorisation des tumeurs malignes sont l'une des plus évidentes. La FDA a autorisé Paige Prostate, un outil de pathologie du cancer basé sur l'IA, en septembre 2021. Associé au visualiseur de pathologie numérique FullFocus, cet outil d'IA facilite la détection du cancer de la prostate. La FDA a examiné les données d'une enquête clinique au cours de laquelle 16 pathologistes ont évalué 527 photos de biopsies de la prostate à la recherche d'indicateurs de cancer comme condition préalable à cette approbation.
- L'IA dans les tests sanguins Les tests sanguins améliorés par l’IA peuvent aider les médecins à détecter plus précisément le cancer. Selon une étude de Cancer Cell International, le profilage sanguin, qui analyse les profils plasmatiques d'ADNc et de miARN à l'aide d'algorithmes d'IA, est un moyen plus efficace de détecter et de surveiller le cancer que les tomodensitogrammes conventionnels. Une technique de pointe basée sur l’IA a été créée par les chercheurs du Johns Hopkins Kimmel Cancer Center pour détecter le cancer du poumon à l’aide de tests sanguins. Des échantillons de sang provenant de 796 participants américains, danois et néerlandais ont été utilisés pour tester cette méthode. Ce test sanguin a été associé par des chercheurs à des biomarqueurs protéiques, des facteurs de risque cliniques et des tomodensitogrammes des patients. Ils ont correctement identifié le cancer chez 91 % des personnes présentant un stade précoce de la maladie et, par conséquent, chez 96 % des patients présentant un cancer à un stade avancé.
- L'IA en immunothérapie- La fonction première de l’IA en immunothérapie est d’évaluer les résultats de diverses thérapies et d’aider les médecins à modifier leurs prescriptions. Une méthode basée sur l'IA a été développée par une équipe de recherche du MD Anderson Cancer Center et du UT Southwestern Medical Center pour déterminer si les néoantigènes (peptides produits lorsque les génomes des cellules cancéreuses sont mutés) sont reconnus par le système immunitaire d'un patient. De tels algorithmes d’IA permettraient de prévoir la réaction des cellules cancéreuses aux immunothérapies. Les cellules T de notre système immunitaire sont toujours à l’affût d’indications de cancer et d’autres organismes invasifs. Ces cellules se lient les unes aux autres lorsqu’elles identifient des néoantigènes. Cependant, certains néoantigènes ne sont pas identifiés, ce qui favorise la propagation du cancer. Ces informations permettraient d’anticiper la réponse des patients aux immunothérapies et de créer des thérapies individualisées à base de lymphocytes T et des vaccins contre le cancer.
Le marché de l’immuno-oncologie (IO) devrait connaître une croissance du marché à un taux de 8,90 % au cours de la période de prévision de 2022 à 2029. Le marché de l’immuno-oncologie (IO) est segmenté en fonction du type, de la cible, de l’indication, de la fin. utilisateurs et canal de distribution. L’Asie-Pacifique devrait observer une croissance significative du taux de croissance favorable de l’adoption de l’immunothérapie anticancéreuse. De plus, l’augmentation de l’incidence de la maladie et, par conséquent, l’augmentation du taux de mortalité devraient propulser la croissance du marché de l’immuno-oncologie (IO) dans la région dans les années à venir.
Pour en savoir plus sur l’étude, visitez :https://www.databridgemarketresearch.com/fr/reports/global-immuno-oncology-market
- Développement de médicaments- Le même médicament peut réagir différemment à diverses formes de cancer. L’IA est capable de prédire l’impact de divers médicaments sur les cellules malignes. Ces informations facilitent la création de nouveaux médicaments anticancéreux et le calendrier de leur utilisation. Par exemple, en fonction de l’état mutationnel de la cellule cancéreuse, une équipe de recherche a créé un algorithme de forêt aléatoire capable de prédire l’action de médicaments anticancéreux.
Avantages de l'IA en oncologie
L’IA présente généralement de nombreux avantages dans le domaine médical. Voici les trois principaux avantages de l’utilisation de l’intelligence artificielle dans la détection et le traitement du cancer :
Fig.2 : Avantages de l'IA en oncologie
- Médecine et thérapies personnalisées - Les mégadonnées et l’IA permettent aux professionnels de la santé d’examiner diverses données sur le patient et les cellules cancéreuses afin de développer des traitements individualisés. Les effets secondaires de ce type de thérapie seront moins graves. Moins de dommages seront causés aux cellules saines, mais cela aura un effet plus important sur les cellules cancéreuses. L’IA aide les radiologues à déterminer quelles tumeurs et anomalies sont cancéreuses et nécessitent une véritable intervention médicale. Selon une étude publiée dans le Journal of the National Cancer Institute, les algorithmes d'IA peuvent identifier les lésions précancéreuses sur les images cervicales et les différencier des autres anomalies afin d'éviter aux patients de recevoir un traitement inutile pour de petits problèmes.
- Élimination des procédures invasives- Parfois, le caractère bénin de la tumeur n'est découvert qu'après l'intervention chirurgicale d'ablation, ce qui aurait permis d'éviter complètement l'intervention. De tels événements peuvent être considérablement réduits grâce à l’aide de l’IA dans le processus de détection du cancer. Une étude, par exemple, a révélé que l’IA peut réduire de 30,6 % les procédures de conservation du sein. Les biopsies à l'aiguille guidées par l'image peuvent être utilisées pour entraîner des algorithmes d'apprentissage automatique à reconnaître les tumeurs malignes. Un système ML de forêt aléatoire a été utilisé pour évaluer 335 patients potentiels atteints de cancer, et les chercheurs ont constaté qu'il a stoppé un tiers des procédures inutiles.
- Réduction des faux positifs et négatifs- L’IA pour la détection du cancer augmentera la précision du diagnostic et réduira les faux positifs et négatifs. Nous en avons la preuve grâce aux recherches sur la détection du cancer du sein. Une patiente sur dix qui passe une mammographie par un médecin obtient des résultats faussement positifs, ce qui la contraint à se soumettre à des procédures stressantes et à des tests invasifs inutiles. L’équipe de recherche de Google a créé un logiciel qui utilise l’IA pour réduire les résultats de mammographie faussement positifs et faussement négatifs de 6 % et 9 %, respectivement. Une autre équipe de chercheurs a créé un algorithme d’IA pour l’identification du cancer du sein. Cet algorithme a aidé les radiologues à réduire les taux de faux positifs de 37,3 % lors d'un examen.
Défis de l’IA en oncologie et perspectives d’avenir
Les interactions non linéaires complexes, la tolérance aux pannes, le traitement distribué simultané et l'apprentissage sont autant de tâches que l'IA peut gérer facilement. en raison de ses bénéfices d'auto-adaptation, du traitement simultané d'informations quantitatives et qualitatives et des résultats validés de nombreuses études cliniques dans de nombreux domaines. Il ne fait aucun doute que l’IA est utilisée de diverses manières dans les soins cliniques. Il exploite pleinement les différentes facettes de la variabilité clinique tout en s’attaquant au manque actuel d’universalité et d’objectivité des systèmes experts. Les hôpitaux peuvent former les jeunes médecins au diagnostic clinique et à la prise de décision en utilisant l’IA. Un nombre croissant d’articles universitaires discutent des remarquables capacités de diagnostic et de pronostic des systèmes informatiques basés sur le ML.
Pour garantir son application dans le diagnostic et le pronostic du cancer, la technologie de l’IA est confrontée à des difficultés importantes qui doivent être surmontées. Par exemple, les données brutes d’entrée provenant de l’imagerie médicale ne peuvent pas être utilisées. Le traitement et l’extraction d’informations à partir des données d’image sont essentiels. Une étude plus approfondie est nécessaire pour interpréter les résultats du coefficient de pondération dans les modèles de réseaux neuronaux, qui ont été validés, calculés et disposent d'intervalles de confiance adéquats en raison du développement technologique et de son adoption généralisée. Le domaine de la médecine clinique utilisera probablement les ANN plus fréquemment grâce à des recherches plus approfondies à leur sujet. Bien que la valeur de l’IA dans cette industrie soit reconnue, les informaticiens et les professionnels de la santé doivent travailler ensemble pour garantir que les membres du personnel interdisciplinaire soient formés et collaborent. Les professionnels de la santé peuvent alors utiliser le potentiel de cette technologie de manière rentable et pratique. Les garanties de confidentialité et de sécurité des données constituent un problème majeur pour l’avenir de l’IA en médecine. Bien que le « big data » et les solutions basées sur le ML aient suscité beaucoup d’enthousiasme ces dernières années, il existe actuellement très peu de cas montrant comment l’IA a affecté la pratique clinique.
Data Bridge Market Research analyse que le marché du diagnostic du cancer devrait atteindre la valeur de 28,21 milliards USD d’ici 2029, avec un TCAC de 7,29 % au cours de la période de prévision. L’augmentation des cas de cancer offre des opportunités de croissance au marché. Le cancer est la deuxième cause de décès dans le monde, avec 10 millions de décès d'ici 2020. Le cancer est responsable d'environ un sixième de tous les décès dans le monde (Source : Organisation mondiale de la santé). En 2020, 19,3 millions de nouveaux cas de cancer ont été signalés, et ce nombre devrait atteindre 30,2 millions d'ici 2040. Cette augmentation de l'incidence du cancer peut être attribuée à la population gériatrique croissante ainsi qu'à la population globale.
Pour en savoir plus sur l’étude, visitez :https://www.databridgemarketresearch.com/fr/reports/global-cancer-diagnostics-market