Des articles

08 février 2023

Comment l’informatique contribue-t-elle au traitement du cancer ?

Le cancer est la première cause de décès au niveau mondial. La guerre mondiale contre le cancer n’est pas nouvelle. Cela dure depuis des décennies maintenant. L’objectif mondial de combattre et de vaincre le cancer est si fort que chacun, des chercheurs aux scientifiques, collabore sans relâche pour mettre fin à ce fardeau mondial.

Introduction

Le domaine de l’informatique a montré par le passé des résultats remarquables et prometteurs dans cette lutte contre le cancer. Les dépenses croissantes consacrées aux compétences en recherche et développement impliquant l’application de l’informatique au diagnostic et au traitement du cancer sont un signe positif pour le secteur mondial de la santé. Mais avant de comprendre le rôle de l’informatique en oncologie, regardons les récentes statistiques mondiales sur le cancer.

How is Computer Science Contributing to Cancer Treatment

Fig.1 : Statistiques sur le cancer 2023 (États-Unis)

Source : Cancer.org

Les diagnostics de cancer les plus courants chez les hommes et les femmes en 2023 sont présentés dans la figure 1. Près de la moitié (48 %) de tous les cas incidents de cancer chez les hommes concernent la prostate, le poumon et les bronches (ci-après le poumon), ainsi que les cancers colorectaux (CRC). ), avec 29 % des diagnostics provenant du seul cancer de la prostate. Le cancer du sein représente à lui seul 31 % de tous les diagnostics de cancer chez les femmes, tandis que le cancer du poumon, le CCR et le cancer du sein représentent ensemble 52 % de tous les nouveaux diagnostics. Nombre projeté de nouveaux cas et de décès parmi les dix principaux types de cancer aux États-Unis, par sexe, en 2023. Les estimations sont arrondies à la dizaine la plus proche et les cas n'incluent pas les cancers in situ de la vessie ou des cellules basales et épidermoïdes de la peau. cancers.

How is Computer Science Contributing to Cancer Treatment

Fig.2 : Tendances de l'incidence du cancer (1975-2019) et des taux de mortalité (1975-2020) par sexe (États-Unis)

Source : Cancer.org

La figure 2 illustre les tendances à long terme des taux d’incidence globaux du cancer, qui reflètent les tendances des comportements à risque de cancer et les changements dans la pratique médicale, comme les tests de dépistage du cancer. Par exemple, le pic d’incidence chez les hommes au début des années 1990 reflète une augmentation de la détection du cancer de la prostate asymptomatique en raison de l’adoption rapide et généralisée du test de l’antigène prostatique spécifique (PSA) chez les hommes qui n’avaient jamais été dépistés. Par la suite, l'incidence du cancer chez les hommes a diminué jusqu'en 2013 environ, puis s'est stabilisée jusqu'en 2019. Les taux chez les femmes sont restés relativement stables jusqu'au milieu des années 1980, lorsqu'ils ont commencé à augmenter lentement de 0,5 % par an.

En conséquence, l’écart entre les sexes se réduit progressivement, le rapport du taux d’incidence entre hommes et femmes passant de 1,59 (IC à 95 % : 1,57-1,61) en 1992 à 1,14 (IC à 95 % : 1,14-1,15) en 2019. Cependant , les différences de risque varient considérablement selon l'âge. Par exemple, les femmes ont des taux environ 80 % plus élevés que les hommes entre 20 et 49 ans, tandis que les hommes ont des taux près de 50 % plus élevés entre 75 ans et plus.

C & CSc : Cancer et informatique

Ces chiffres mettent non seulement en évidence la terrible réalité de cette maladie répandue, mais sont également cruciaux pour les universitaires, les décideurs politiques et autres professionnels, car ils doivent d'abord comprendre les effets du cancer sur la population mondiale avant de proposer des mesures pour le combattre.

Un appel à l’action surprenant adressé à un groupe improbable de candidats – les informaticiens – fait partie des techniques récemment proposées. Ces progrès récents dans la lutte contre le cancer pourraient modifier fondamentalement le paysage de la recherche dans ce domaine et, à terme, sauver des milliers de vies. Il ne s’agit là que d’une méthode potentielle par laquelle l’informatique pourrait récolter des mégadonnées pour faire progresser sérieusement la science dans son ensemble.

Siddhartha Mukherjee, médecin et scientifique américain d'origine indienne, écrit dans son livre L'Empereur de toutes les maladies : une biographie du cancer à propos de la découverte étonnamment récente selon laquelle le cancer est une maladie héréditaire provoquée principalement par des mutations de notre ADN. Ainsi, en raison de ces mutations, les tumeurs cancéreuses présentent une diversité inconcevable qui rend difficile leur éradication complète.

En conséquence, il a été suggéré qu'en séquençant le génome d'une tumeur cancéreuse, qui est essentiellement le processus de traduction ou de décodage du langage énigmatique qui constitue la séquence d'ADN unique de la tumeur, les médecins seraient alors en mesure de prescrire un traitement individualisé et ciblé. pour chaque patient atteint d'un cancer, dans le but soit d'arrêter la croissance du cancer, soit de le guérir complètement.

Des informaticiens tels que David Patterson, l'un des directeurs du Laboratoire d'algorithmes, de machines et de personnes (AMP Lab) de l'UC Berkeley, ont été motivés par cela dans leur travail. L’œil humain ne peut pas accomplir seul une telle tâche. Pour absorber et analyser correctement et avec succès cet énorme volume de données à une vitesse vertigineuse, il faudrait faire appel à certaines des plates-formes informatiques cognitives les plus puissantes au monde, telles que Watson d'IBM. L’implication des informaticiens dans ce processus hautement technologique aura trois conséquences :

  • La réduction des coûts de traitement de l’information peut contribuer à rendre un traitement sur mesure accessible à tous

  • Cela pourrait conduire au développement d’un référentiel du génome du cancer accessible aux chercheurs et aux experts médicaux

  • Il sera capable de trouver une petite aiguille dans une très grosse botte de foin en utilisant le référentiel susmentionné pour trouver une thérapie individualisée et ciblée pour chaque tumeur unique parmi les innombrables combinaisons médicamenteuses possibles.

L'oncologie computationnelle comme extension de l'informatique en oncologie

La biologie computationnelle établit un lien entre les sciences physiques et l’oncologie. L’oncologie computationnelle est un terme relativement nouveau en médecine qui commence à gagner du terrain. Certaines personnes pourraient être surprises d’apprendre que d’immenses institutions médicales du monde entier créent des départements complets labellisés comme tels. De plus en plus de temps, d’efforts, d’argent et de ressources sont consacrés à la découverte de la manière dont le cancer se propage et peut finalement être définitivement éliminé du corps.

Dans tous les cas, la probabilité de développer des solutions durables augmente avec les informations recueillies. Afin d'organiser les voies de croissance tumorale, la biologie tumorale, la bioinformatique et les profils de marqueurs tumoraux et de construire des modèles prédictifs de traitements basés sur toutes ces données, l'oncologie computationnelle organise les aspects moléculaires du cancer.

Les modèles informatiques sont utilisés en oncologie computationnelle pour produire des analyses de marqueurs tumoraux utiles en médecine de précision, en dépistage de population et en modélisation de cellules cancéreuses individuelles. Cette connaissance rend plus probable que des médicaments ou des techniques de traitement spécifiques offriront des remèdes à long terme à la maladie chez une personne atteinte de cancer.

Pendant de nombreuses années – et dans certaines circonstances, même aujourd’hui – la majorité des personnes atteintes de cancer ont reçu un traitement qui n’est que « largement appliqué ». Lorsque les marqueurs moléculaires sont absents ou moins utiles pour déterminer les raisons précises pour lesquelles certaines approches thérapeutiques sont efficaces pour certains patients mais pas pour d’autres. Afin de mieux servir les patients, les services d’oncologie informatique peuvent exploiter la richesse des informations sur notre génome que le séquençage de nouvelle génération (NGS) a rendues disponibles dans les cellules saines et malades et les organiser dans une base de données.

Pour gérer toutes les facettes de ce domaine émergent de la médecine, certains départements recherchent des personnes possédant des compétences en informatique ou en sciences de laboratoire. Pour les éducateurs, les scientifiques et les cliniciens, ce domaine est en pleine expansion. En travaillant ensemble, nous pouvons accroître nos connaissances et nos compétences afin d'alléger le fardeau du cancer dans le monde, qui devrait passer de 14,1 millions de nouveaux cas en 2012 à 23,6 millions de cas par an d'ici 2030, selon le Centre international de recherche. sur le Cancer.

Data Bridge Market Research analyse que le marché du diagnostic du cancer devrait atteindre la valeur de 28,21 milliards USD d’ici 2029, avec un TCAC de 7,29 % au cours de la période de prévision. L'Amérique du Nord domine le marché du diagnostic du cancer en raison de la présence croissante de nombreuses entreprises de biotechnologie et de dispositifs médicaux, de l'augmentation du financement disponible pour les projets de recherche et développement et de l'adoption élevée de technologies de pointe par la région. Certains des principaux acteurs opérant sur le marché du diagnostic du cancer sont Abbott. (États-Unis), DiagnoCure Inc. (Canada), Thermo Fisher Scientific Inc. (États-Unis), Illumina, Inc. (États-Unis), QIAGEN (Allemagne) et F. Hoffmann-La Roche Ltd (Suisse).

Pour en savoir plus sur l’étude, visitez : https://www.databridgemarketresearch.com/fr/reports/global-cancer-diagnostics-market

« Microsoft a une ambition de plusieurs décennies »

Microsoft utilise l'informatique, notamment l'apprentissage automatique et les algorithmes, pour lutter contre le cancer. Les chercheurs de Microsoft peuvent modifier les techniques généralement utilisées pour modéliser les processus informatiques afin de simuler les processus biologiques en abordant le cancer comme un système de traitement de l'information.

L'objectif ultime de l'entreprise est de développer des ordinateurs moléculaires qui donneront l'ordre au corps de combattre les cellules cancéreuses dès leur découverte. En combinant cela avec une stratégie basée sur les données, les efforts de Microsoft pour lutter contre la maladie se concentrent sur l'apprentissage automatique. L'entreprise espère utiliser des outils d'analyse pour exploiter les données biologiques existantes et les utiliser pour mieux comprendre et traiter la maladie.

C'est une découverte mathématique profonde, pas seulement une analogie. Même si la biologie et l’informatique peuvent sembler aux antipodes, elles entretiennent en réalité des liens très profonds au niveau le plus fondamental. Par exemple, l’apprentissage automatique et le traitement du langage naturel sont utilisés pour fournir une méthode de tri des données de recherche disponibles, qui peuvent ensuite être fournies aux oncologues afin de produire le traitement contre le cancer le plus efficace et le plus personnalisé pour les patients.

Actuellement, il y a tellement d’informations disponibles qu’il est difficile pour une seule personne de toutes les lire et de les comprendre. Les informations peuvent être traitées plus rapidement et plus simplement par l’apprentissage automatique que par les humains.

L'apprentissage automatique est également combiné à la vision par ordinateur pour aider les radiologues à mieux comprendre comment la tumeur d'un patient se développe. Les chercheurs développent un système qui, à l’avenir, analysera les pixels des scans 3D pour déterminer exactement à quel point une tumeur a grossi, diminué ou changé de forme depuis le scan précédent. Selon Andrew Phillips, chef de la division de recherche en informatique biologique du Cambridge Lab, les scientifiques peuvent tirer des leçons de l'héritage de Microsoft en tant que pionnier de l'industrie du logiciel. "Nous pouvons programmer la biologie en utilisant les techniques que nous avons découvertes pour programmer des ordinateurs", a-t-il ajouté. "Cela ouvrira la voie à bien plus d'utilisations et à des traitements encore meilleurs."

Phillips développe un ordinateur moléculaire qui peut être inséré dans une cellule pour détecter les maladies. Une réponse pour combattre la maladie serait déclenchée si le capteur découvrait qu’il s’agissait d’un cancer. Ce type de recherche utiliserait également l’informatique conventionnelle et la réutiliserait pour la biotechnologie ou des applications médicales, permettant ainsi au corps d’être entraîné à combattre la maladie de la même manière que nous programmons les ordinateurs pour le faire.

Bien que la recherche en soit encore à ses débuts, Phillips a déclaré au Telegraph que dans « cinq à dix ans », il serait techniquement réalisable d’implanter un système moléculaire intelligent pour combattre une maladie de cette manière.

Conclusion

La recherche sur le cancer est de plus en plus menée en ligne. Les informaticiens devraient s'enrôler en masse car ils pourraient avoir les meilleurs talents pour lutter contre le cancer dans les dix prochaines années. On espère qu'en séquençant le génome d'une tumeur cancéreuse, les professionnels de la santé pourront bientôt proposer une thérapie personnalisée et ciblée pour ralentir ou arrêter la propagation du cancer.

Compte tenu de la rapidité avec laquelle l’informatique a eu un impact sur la vie des patients et s’est intégrée à la recherche sur le cancer, il semble raisonnable de prédire que les années à venir seront tout aussi productives, sinon plus. Au cours des dix prochaines années, on s’attend à ce que les médecins soient capables de créer des cartes détaillées de la manière dont les tissus sains et malades se développent et évoluent. Ces cartes les aideront à concevoir de nouveaux diagnostics et traitements contre le cancer.

Data Bridge Market Research analyse que l'intelligence artificielle sur le marché des soins de santé, qui s'élève à 9,64 milliards de dollars en 2022, devrait atteindre 272,91 milliards de dollars d'ici 2030, avec un TCAC de 51,87 % au cours de la période de prévision 2023 à 2030. Le marché est segmenté en fonction de l’offre, de la technologie, de l’utilisateur final et de l’application. L’Asie-Pacifique devrait connaître le taux de croissance le plus élevé au cours de la période de prévision de 2023 à 2030 en raison de l’augmentation des initiatives gouvernementales visant à promouvoir la sensibilisation, de l’augmentation du tourisme médical et de la demande croissante de soins de santé de qualité dans la région.

Pour en savoir plus sur l’étude, visitez : https://www.databridgemarketresearch.com/fr/reports/global-artificial-intelligence-in-healthcare-market


Témoignages clients