Überblick
Künstliche Intelligenz, die Inhalte wie Audio, Text, Code, Video, Fotos und andere Daten erstellen kann, wird als generative KI bezeichnet. Generative KI verwendet maschinelle Lernalgorithmen, um Ausgaben auf der Grundlage eines Trainingsdatensatzes zu erstellen. Im Gegensatz zu Standard-KI-Algorithmen, die verwendet werden können, um Muster in einem Trainingsdatensatz zu finden und Vorhersagen zu treffen, können die Ausgaben der generativen KI im selben Medium wie die Eingabeaufforderung (Text-zu-Text) oder in einem anderen Medium (Text-zu-Bild oder Bild-zu-Video) erfolgen. Die generativen KI-Anwendungen ChatGPT, Bard, DALL-E, Midjourney und DeepMind sind einige bekannte Beispiele. Insbesondere werden generative KI-Modelle mit großen Mengen vorhandener Inhalte gefüttert, um die Modelle zu trainieren, neue Inhalte zu erstellen. Sie lernen, zugrunde liegende Muster im Datensatz auf der Grundlage einer Wahrscheinlichkeitsverteilung zu identifizieren und erstellen bei einer Eingabeaufforderung ähnliche Muster (oder Ausgaben auf der Grundlage dieser Muster).
Zum Beispiel,
Darüber hinaus verwendet ein Teil der Oberkategorie des maschinellen Lernens, der als Deep Learning oder generative KI bezeichnet wird, ein neuronales Netzwerk, das es ihm ermöglicht, komplexere Muster zu verarbeiten als herkömmliches maschinelles Lernen. Neuronale Netzwerke sind vom menschlichen Gehirn inspiriert und erfordern nicht unbedingt menschliche Aufsicht oder Eingriffe, um Unterschiede oder Muster in den Trainingsdaten zu erkennen.
Laut Data Bridge Market Research wird der Markt für künstliche Intelligenz im Prognosezeitraum von 2021 bis 2028 voraussichtlich ein Marktwachstum von durchschnittlich 26,1 % pro Jahr verzeichnen. Der Bericht von Data Bridge Market Research bietet umfassende Analysen und bessere Einblicke in den Markt und hebt die Faktoren hervor, die voraussichtlich einen wesentlichen Einfluss auf das Wachstum im Prognosezeitraum haben werden. Um mehr über die Studie zu erfahren, folgen Sie bitte dem folgenden Link
https://www.databridgemarketresearch.com/de/reports/global-artificial-intelligence-market
Was ist generative KI?
Generative KI bezieht sich auf Deep-Learning-Modelle, die Rohdaten verwenden können, um auf Anforderung statistisch wahrscheinliche Ergebnisse zu generieren. Generative Modelle werden seit Jahren in der Statistik verwendet, um numerische Daten zu analysieren. Der Aufstieg des Deep Learning machte es jedoch möglich, sie auf Bilder, Sprache und andere komplexe Datentypen auszuweiten. Zu den ersten Modellen, die diese Crossover-Leistung erreichten, gehörten die 2013 eingeführten Variation Auto-Encoder (VAEs). VAEs waren die ersten Deep-Learning-Modelle, die weit verbreitet zur Generierung realistischer Bilder und Sprache eingesetzt wurden.
Generative KI kann aus vorhandenen Artefakten lernen, um neue, realistische Artefakte zu generieren, die die Eigenschaften der Trainingsdaten widerspiegeln. Sie kann eine Vielzahl neuartiger Inhalte produzieren, wie etwa Bilder, Videos, Musik, Sprache, Text, Softwarecode und Produktdesigns. Generative KI verwendet mehrere Techniken, die sich ständig weiterentwickeln. An erster Stelle stehen KI-Grundmodelle, die anhand eines breiten Satzes unmarkierter Daten trainiert werden, die mit zusätzlicher Feinabstimmung für verschiedene Aufgaben verwendet werden können. Um diese trainierten Modelle zu erstellen, sind komplexe Mathematik und enorme Rechenleistung erforderlich, aber im Wesentlichen handelt es sich dabei um Vorhersagealgorithmen.
Arten von KI-Modellen:
Modell
|
TYP
|
Bilderzeugung
|
Bild-zu-Bild-Übersetzung, Skizzen zu realistischen Bildern, Text-zu-Bild-Übersetzung, Text-zu-Sprache
|
Audiogenerierung
|
Soundtrack bearbeiten, Autotune
|
Generierung synthetischer Daten
|
Pseudobilder und Deep Fakes
|
Videogenerierung
|
|
Quelle: Altexsoft
Die Reise der generativen KI
Die Risiken der generativen KI sind beträchtlich und ändern sich schnell. ChatGPT und ähnliche Programme werden mit einer großen Menge an Daten trainiert, die der Öffentlichkeit zur Verfügung gestellt werden. Es ist wichtig, genau darauf zu achten, wie Ihre Unternehmen die Plattformen nutzen, da sie nicht dazu bestimmt sind, der Datenschutz-Grundverordnung (DSGVO) und anderen Urheberrechtsgesetzen zu entsprechen.
Wichtige Strategien der Unternehmer
Generative KI hat ihren Weg in die Geschäftswelt gefunden. Laut dem globalen KI-Adoptionsindex von 2022 haben bemerkenswerte 35 % der Unternehmen sie bereits integriert. Generative KI-Tools, darunter ChatGPT, analysieren riesige Datenmengen, um exklusive Erkenntnisse zu gewinnen, die herkömmliche Methoden oft nicht zeitnah liefern. Generative KI für Unternehmen hat weitreichende Auswirkungen, die von der Automatisierung der Inhaltserstellung über die Optimierung der Lieferkette bis hin zu verbessertem Kundenservice reichen. Durch die Kombination von maschinellem Lernen und natürlicher Sprachverarbeitung ermöglichen generative KI-Tools Unternehmen, fundierte Entscheidungen zu treffen, ihre Abläufe zu optimieren und ihre Gewinne zu steigern.
Generative künstliche Intelligenz und erweiterte Realität sind leistungsstarke Tools, die dabei helfen können, drängende gesellschaftliche Herausforderungen und geschäftliche Probleme anzugehen, indem sie die menschliche Erfahrung ergänzen, erweitern und ausbauen, anstatt sie zu reproduzieren oder zu ersetzen. Generative KI kann Text, Sprache, Bilder, Musik, Videos und insbesondere Code „generieren“. Wenn diese Fähigkeit mit einem Feed der eigenen Informationen einer Person kombiniert wird, der dazu verwendet wird, das Wann, Was und Wie einer Interaktion anzupassen, dann wird die Leichtigkeit, mit der jemand Dinge erledigen kann, und die zunehmende Zugänglichkeit von Software dramatisch steigen.
Generative KI verändert Branchen in einer Vielzahl von Sektoren und gestaltet Unternehmen in rasantem Tempo um, da sie in der Lage ist, neuartige Lösungen zu entwickeln, Verfahren zu automatisieren und die Entscheidungsfindung zu verbessern. Es handelt sich um eine Untergruppe der künstlichen Intelligenz, die Originaltexte, Grafiken und andere Arten von Material erstellen kann. Den Ergebnissen der Umfrage zufolge ist generative KI ein wirksames Werkzeug, das in Unternehmen auf vielfältige Weise eingesetzt werden kann. In den kommenden Jahren wird generative KI mit dem technologischen Fortschritt wahrscheinlich einen noch größeren Einfluss auf Organisationen haben.
Anwendung generativer KI
Das Aufkommen künstlicher Intelligenz (KI) hat die Art und Weise, wie Unternehmen arbeiten und ihre täglichen Arbeitsabläufe verwalten, erheblich beeinflusst. Das Aufkommen verschiedener KI-Anwendungen und -Tools hat es Unternehmen ermöglicht, klügere Entscheidungen zu treffen und sich wiederholende Aufgaben zu automatisieren, wodurch Abläufe effizienter und effektiver werden. Professionelle Produktivitätsanwendungen wie E-Mail und Textverarbeitung können jetzt dank der neuesten Entwicklungen im Bereich generativer KI-Funktionen durch Automatisierung erweitert werden, um die Effizienz und Genauigkeit zu steigern. Die Implementierung von GPT-3.5 durch Microsoft in der Premium-Edition von Teams ist ein bemerkenswertes Beispiel für die Leistungsfähigkeit generativer KI. Durch die automatische Erstellung von Abschnitten, Titeln und benutzerdefinierten Markierungen verbessert dieses effektive Tool Besprechungsprotokolle. Sogar Erwähnungen können hervorgehoben werden, sodass Sie die wichtigsten Passagen des Gesprächs einfacher finden können.
Inhaltserstellung
Die Erstellung hochwertiger Inhalte ist eine der schwierigsten und zeitaufwändigsten Aufgaben in der Unternehmenswelt, egal ob es sich um die Erstellung von Produktbeschreibungen, Werbematerialien oder sogar ganzen Artikeln handelt. Unternehmen können in solchen Fällen die generative KI-Technologie nutzen, um in kurzer Zeit qualitativ hochwertige Inhalte zu erstellen. Durch die Verwendung von Algorithmen für die Verarbeitung natürlicher Sprache und maschinelles Lernen können generative KI-Tools vorhandene Inhalte bewerten und neue, hochwertige Inhalte erstellen, die bestimmten Standards entsprechen. Dabei können Überlegungen zu Ton, Stil und sogar Zielgruppen angestellt werden.
Kundendienst
Der Kundenservice ist ein wichtiger Bereich, in dem generative KI-Tools wie ChatGPT anspruchsvolle Geschäftsprobleme lösen können. Chatbots auf Basis von ChatGPT können Kunden schnell und präzise Antworten auf ihre Anfragen geben und so das allgemeine Kundenerlebnis verbessern. Sie können Kunden auch auf Grundlage ihrer Kaufhistorie und Präferenzen maßgeschneiderte Vorschläge unterbreiten.
Zum Beispiel,
Rechtlicher Ablauf
Die Unterstützung der Rechtsgeschäfte eines Unternehmens ist eine der wichtigsten Geschäftsanwendungen generativer KI. Unternehmen können durch den Einsatz generativer KI-Tools in ihren Rechtsabteilungen erhebliche Vorteile erzielen. Durch die Fähigkeit, Rechtsrecherchen durchzuführen, die Rechtsprechung zu prüfen und Rechtsdokumente zu verfassen, hat generative KI das Potenzial, Rechtsteams dabei zu unterstützen, leistungsfähiger und effizienter zu arbeiten.
Zum Beispiel,
Abwicklung von HR-Prozessen
Künstliche Intelligenzinstrumente wie ChatGPT haben das Potenzial, die Personalarbeit in Unternehmen erheblich zu unterstützen. ChatGPT kann durch natürliche Sprachverarbeitung und maschinelles Lernen wiederkehrende HR-Aufgaben automatisieren und gleichzeitig genaue und schnelle Antworten auf Mitarbeiteranfragen liefern.
Unternehmen können beispielsweise die Leistungsfähigkeit generativer KI nutzen, um einen virtuellen Personalassistenten zu entwickeln. Dieser virtuelle Assistent kann Mitarbeitern bei Aufgaben wie der Urlaubsverwaltung, der Verwaltung von Zusatzleistungen und der Einarbeitung neuer Mitarbeiter in das Unternehmen helfen. Darüber hinaus kann der Chatbot Mitarbeitern auf Grundlage ihrer Fähigkeiten und Interessen maßgeschneiderte Empfehlungen zur beruflichen Weiterentwicklung geben und so die Mitarbeiterbeteiligung und -bindung verbessern. Darüber hinaus kann generative KI genutzt werden, um Betrugspräventionsmaßnahmen bei Online-Aufnahmetests einzuführen.
Datenanalyse
Generative KI-Technologie bietet in Unternehmen einen erheblichen Vorteil bei der Datenanalyse, indem sie verborgene Muster und Trends aufdeckt, die der menschlichen Wahrnehmung entgehen können. Die Fähigkeit der KI, solche Erkenntnisse zu offenbaren, bietet Unternehmen die Möglichkeit, neue Wachstumsbereiche zu identifizieren, Abläufe zu optimieren und die Zufriedenheit ihrer Kunden zu steigern.
Die Sentimentanalyse-Funktion der generativen KI ist ein hervorragender Anwendungsfall in der Datenanalyse. Tools wie ChatGPT können Social-Media-Daten analysieren, um die Einstellung der Kunden zu einer Marke, einem Produkt oder einer Dienstleistung zu ermitteln. Unternehmen können die Vorteile der generativen KI im Geschäftsleben nutzen, indem sie diese Informationen verwenden. Sie können ihre Marketingstrategien verfeinern, ein tiefgreifendes Verständnis ihrer Kunden entwickeln und die Kundenzufriedenheit mithilfe dieser Daten steigern. Darüber hinaus haben generative KI-Tools das Potenzial, große Datenmengen zu analysieren und potenzielle Risiken zu erkennen. Solche analytischen Erkenntnisse bieten Unternehmen, die generative KI verwenden, die Möglichkeit, potenzielle Probleme proaktiv zu identifizieren und anzugehen, bevor sie eskalieren. Durch die Analyse von Kundenfeedback und -verhalten kann die generative KI-Technologie im Geschäftsleben Muster identifizieren, die ein hohes Risiko der Kundenabwanderung bedeuten. Diese Funktionalität ermöglicht es Unternehmen, solche Muster proaktiv anzugehen und so Kunden durch personalisierte Angebote und Anreize zu binden.
Steigern Sie den Umsatz und die Ziele in einer Organisation
Viele Organisationen nutzen generative KI für ihr Geschäft, insbesondere um ihren Umsatz zu steigern. Generative künstliche Intelligenz (KI) gewinnt in der Geschäftswelt an Bedeutung, um den Umsatz zu steigern und wettbewerbsfähig zu bleiben. Eine spezifische Anwendung dieser Technologie umfasst die Verwendung generativer Sprachmodelle, um personalisierte Produktbeschreibungen zu erstellen, die auf die individuellen Bedürfnisse und Vorlieben der Kunden zugeschnitten sind. Durch die Analyse von Kundendaten und -verhalten ist generative KI in der Lage, Beschreibungen zu erstellen, die einzigartig und überzeugend sind. Die Preisoptimierung ist eine weitere Möglichkeit, generative KI-Technologie in Unternehmen sinnvoll einzusetzen. Durch die Analyse von Markttrends, Kundenverhalten und Konkurrenzpreisen können generative Modelle optimale Preise für Produkte oder Dienstleistungen generieren. Auf diese Weise können Unternehmen ihren Umsatz maximieren und ihren Kunden gleichzeitig einen Mehrwert bieten.
Darüber hinaus kann generative KI von Unternehmen genutzt werden, die Unterstützung bei der Kundensegmentierung und gezielten Marketingkampagnen benötigen. Durch die genaue Analyse von Kundendaten können generative Modelle Muster erkennen und gezielte Kampagnen erstellen, die bestimmte Kundensegmente ansprechen.
Neue Produktentwicklung
Die Entwicklung neuer Produkte ist eine weitere großartige Anwendung generativer KI für Unternehmen. Die Entwicklung innovativer Produkte und die Beschleunigung des Designprozesses können für viele Unternehmen zu komplizierten geschäftlichen Problemen führen. Dennoch gibt es kreative Methoden, um diese Hindernisse zu überwinden, und eine davon ist die Nutzung von Mechanismen, die auf künstlicher Intelligenz basieren.
Durch den Einsatz von KI können Unternehmen große Datenmengen schnell prüfen und optimierte Designs auf der Grundlage bestimmter Parameter erstellen. Dies kann die Dauer und die Kosten der Produktentwicklung erheblich reduzieren und gleichzeitig Qualität und Leistung sicherstellen.
Zum Beispiel,
Entdeckung eines Betruges
Um das komplexe Problem der Betrugserkennung im Geschäftssektor anzugehen, können Unternehmen KI-gestützte Tools einsetzen. Diese Tools sind in der Lage, verschiedene Arten betrügerischer Aktivitäten aktiv zu erkennen und zu verhindern. Eine vorteilhafte Anwendung der generativen KI für Unternehmen ist die Identifizierung gefälschter Ausweisdokumente. Diese Tools scannen und authentifizieren schnell Ausweisdokumente wie Reisepässe, Führerscheine und mehr, um betrügerische Aktivitäten zu verhindern.
Darüber hinaus können Unternehmen KI-gestützte Tools nutzen, um Zahlungsbetrug zu erkennen. Diese Tools prüfen Zahlungsdaten und erkennen verdächtige Transaktionen oder Muster. So können Unternehmen geeignete Maßnahmen ergreifen und betrügerische Aktivitäten verhindern.
Ein weiterer Bereich, in dem KI-gestützte Betrugserkennungstools hilfreich sein können, ist die Überprüfung gefälschter Konten. Diese Tools untersuchen das Benutzerverhalten und die Daten, um gefälschte Konten zu erkennen und zu verhindern, dass Benutzer auf die Plattform zugreifen oder betrügerische Transaktionen durchführen.
Herausforderungen für generative KI
Generative künstliche Intelligenz (KI) erfreut sich großer Beliebtheit, doch ihre Einführung in Unternehmen birgt ein gewisses ethisches Risiko. Da generative KI zum Mainstream wird, haben Unternehmen die Verantwortung, sicherzustellen, dass sie diese Technologie ethisch nutzen und potenzielle Schäden minimieren. Im Folgenden sind einige Herausforderungen aufgeführt, denen sich Organisationen bei der Nutzung generativer KI in ihrem Unternehmen stellen müssen:
Abschluss
Während Chatbots, die Text generieren, wie ChatGPT, viel Aufmerksamkeit auf sich gezogen haben, kann generative KI auch andere Arten von Material wie Grafiken, Videos, Audio und Computercode produzieren. Darüber hinaus kann sie klassifizieren, ändern, zusammenfassen, auf Anfragen antworten und neues Material für Organisationen erstellen. Indem sie die Arbeitsweise auf Aktivitätsebene über Geschäftsfunktionen und Arbeitsabläufe hinweg verändert, kann jede dieser Aktionen einen Mehrwert bieten. Mit der Weiterentwicklung und Reifung der Technologie können diese Arten generativer KI zunehmend in Unternehmensabläufe integriert werden, um Aufgaben zu automatisieren und bestimmte Aktionen direkt auszuführen. Generative KI kann jedoch verschiedene Risiken bergen, da Modelle aufgrund unvollständiger Trainingsdaten oder Entscheidungen der Ingenieure, die die Modelle entwickeln, algorithmische Verzerrungen erzeugen können. Darüber hinaus können Modelle unterschiedliche Antworten auf dieselben Eingabeaufforderungen liefern, was die Fähigkeit des Benutzers beeinträchtigt, die Genauigkeit und Zuverlässigkeit der Ergebnisse zu beurteilen.
DBMR hat mehr als 40 % der Fortune 500-Unternehmen weltweit betreut und verfügt über ein Netzwerk von mehr als 5000 Kunden. Unser Team hilft Ihnen gerne bei Ihren Fragen. Besuchen Sie https://www.databridgemarketresearch.com/de/contact
Kontaktiere unsCybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet