>Spanischer Markt für maschinelles Lernen als Dienstleistung, nach Dienstleistung (Managed Service, Professional, Professional Service), Geschäftsfunktion (Personalwesen, Vertrieb und Marketing, Finanzen und Betrieb), Bereitstellungsmodell (Cloud, vor Ort), Organisationsgröße (große Organisation, kleine und mittlere Organisation), Anwendung (Arzneimittelentdeckung, Betrugserkennung und Risikomanagement, Verarbeitung natürlicher Sprache, Marketing und Werbung, Sicherheit und Überwachung, Bilderkennung , Predictive Analytics, Data Mining, erweiterte und virtuelle Realität), Endbenutzer (Banken, Finanzdienstleistungen und Versicherungen, IT und Telekommunikation, Forschung und Lehre, Regierung und öffentlicher Sektor, Einzelhandel und E-Commerce, Fertigung, Gesundheitswesen und Pharmazeutik, Reisen und Logistik, Energie und Versorgung, Medien und Unterhaltung) – Branchentrends und Prognose bis 2029
Marktanalyse und Größe
Unternehmen auf dem Markt für maschinelles Lernen als Dienstleistung konzentrieren sich auf Schlüsselbranchen wie Gesundheitstechnologie, BFSI und Telekommunikation, um nach der Coronavirus-Pandemie stabile Einnahmequellen zu schaffen. Technische Fehler und der Mangel an Fachkräften mit Erfahrung im maschinellen Lernen scheinen jedoch einer der Hauptfaktoren zu sein, die die Einführung von maschinellem Lernen durch Unternehmen behindern. Dies kann Hürden bei der Implementierung von Plattformen für maschinelles Lernen als Dienstleistung schaffen. Darüber hinaus wirkt sich der Mangel an Datensicherheit aufgrund des Mangels an Geräten negativ auf das Wachstum des Marktes aus. Daher müssen Teilnehmer am Markt für maschinelles Lernen als Dienstleistung mit staatlichen und restriktiven Organisationen zusammenarbeiten, um die Branche des maschinellen Lernens als Dienstleistung zu standardisieren.
Data Bridge Market Research analysiert, dass der Marktwert für maschinelles Lernen als Dienstleistung, der im Jahr 2021 5,45 Milliarden USD betrug, bis 2029 voraussichtlich einen Wert von 79,34 Milliarden USD erreichen wird, bei einer CAGR von 39,76 % während des Prognosezeitraums 2022–2029.
Marktdefinition
Maschinelles Lernen ist eine Technologie, die Computern die Fähigkeit verleiht, grundlegende Funktionen zu erlernen und zu ändern, wenn sie mit unterschiedlichen Datensätzen in Berührung kommen. Maschinelles Lernen ist zum wichtigsten Werkzeug für Unternehmen geworden. Technologiegiganten wie Amazon und Google geben enorme Summen aus, um ihren Kundenstamm zu vergrößern und zu festigen.
Berichtsumfang und Marktsegmentierung
Berichtsmetrik |
Details |
Prognosezeitraum |
2022 bis 2029 |
Basisjahr |
2021 |
Historische Jahre |
2020 (Anpassbar auf 2019 – 2014) |
Quantitative Einheiten |
Umsatz in Mrd. USD, Volumen in Einheiten, Preise in USD |
Abgedeckte Segmente |
Service (Managed Service, Professional, Professional Service), Geschäftsfunktion (Personalwesen, Vertrieb und Marketing, Finanzen und Betrieb), Bereitstellungsmodell (Cloud, vor Ort), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen), Anwendung (Medikamentenforschung, Betrugserkennung und Risikomanagement, Verarbeitung natürlicher Sprache, Marketing und Werbung, Sicherheit und Überwachung, Bilderkennung, prädiktive Analytik, Data Mining, erweiterte und virtuelle Realität), Endbenutzer (Bankwesen, Finanzdienstleistungen und Versicherungen, IT und Telekommunikation, Forschung und Lehre, Regierung und öffentlicher Sektor, Einzelhandel und E-Commerce, Fertigung, Gesundheitswesen und Pharmazeutik, Reisen und Logistik, Energie und Versorgung, Medien und Unterhaltung) |
Abgedeckte Marktteilnehmer |
Google (USA), Microsoft (USA), IBM (USA), SAP (Deutschland), Amazon Web Services, Inc. (USA) |
Marktchancen |
|
Marktdynamik für maschinelles Lernen als Dienstleistung in Spanien
In diesem Abschnitt geht es um das Verständnis der Markttreiber, Vorteile, Chancen, Einschränkungen und Herausforderungen. All dies wird im Folgenden ausführlich erläutert:
Treiber:
- Fortschritte in der Technologie
Im Bereich der Gesichtserkennungstechnologien finden rasante Fortschritte und Innovationen statt. Zahlreiche Lösungsanbieter leisten in diesen Bereichen viel Arbeit. So hat Affectiva beispielsweise vor Kurzem seine Technologie zur Gefühlsanalyse auf den Markt gebracht, die über den größten Datenspeicher mit über zwei Millionen Gesichtsvideos verfügt und seinen Kunden eine hohe Genauigkeit mit unübertroffenen Erkenntnissen ermöglicht. Darüber hinaus erzielen andere Akteure wie kleinere Unternehmen wie Cognitec System, Emotient, Gesturetek, Saffron und Palantir wichtige Fortschritte in den Bereichen Gestenerkennung, Gesichtserkennung, psychologische Merkmalsberechnung und somatische Zellanalyse. Diese Entwicklungen werden voraussichtlich das Wachstum des Marktes in den kommenden Jahren vorantreiben.
- Datenspeicherung und Archivierung
Bei Deep-Learning-Algorithmen spielt die Datenspeicherung und -archivierung eine wichtige Rolle bei der Vorhersage von Lösungen für sehr komplexe Probleme. Da ein Deep-Learning-Algorithmusprogramm mit einem künstlichen neuronalen Netzwerk arbeitet, das aus vielen Schichten besteht, benötigt es eine große Menge an Datensätzen, um das Ergebnis zu liefern. Deep-Learning-Algorithmusprogramme verwenden Datenspeicherung und -archivierung, um sich auf die komplexen Funktionen innerhalb des künstlichen neuronalen Netzwerks zu konzentrieren.
- Modellierer und Verarbeiter
Im letzten Jahrzehnt haben sich Technologien des maschinellen Lernens zu „Algorithmen“ entwickelt, die in so vielen Bereichen entwickelt wurden, darunter Statistik, Mathematik, Neurobiologie und Informatik, wodurch sie kommerziell rentabel und rechnerisch robust wurden. Viele der heute verfügbaren Anwendungen, wie Spracherkennung, Betrugserkennung und Netzwerkentwicklung, verwenden eine Reihe von Techniken des maschinellen Lernens, die auf Klassifizierung, Regression und Schätzung basieren, um strukturierte Datensätze zu verarbeiten.
- Cloud- und webbasierte Anwendungsprogrammierschnittstelle (APIS)
In der Theorie des maschinellen Lernens ist die Nachfrage nach Informationen ein wichtiger Eingabeparameter. Einige Geschäftsbereiche wie Banken und Finanzdienstleistungen benötigen sofort eine große Menge an Informationen, um das Marktverhalten vorherzusagen. Algorithmen des maschinellen Lernens haben viel weniger Zeit, um Ergebnisse vorherzusagen, wenn sie Informationen aus Datenspeicher- und Archivierungssoftwarepaketen sammeln. Um diese Qualität zu übertreffen, erstellen Algorithmen des maschinellen Lernens eine Schnittstelle zwischen der Cloud und der Anwendungsplattform.
Gelegenheiten:
- Steigende Investitionen in die Gesundheitsbranche
Im Bereich der Medizin werden Big Data eingesetzt, um komplexe Statistiken in großen Mengen zu berechnen und so Trends und Muster zu ermitteln, die für Anwendungen in der Gesundheitsbranche von entscheidender Bedeutung sind. Big Data hilft Ärzten, Probleme vorherzusehen, bevor sie auftreten. Das Elsevier Health Analytics Cluster hat die Patientenversorgung in der BRD durch den Einsatz von Big Data revolutioniert. Das Unternehmen arbeitet eng mit Gesundheitsökonomen, Ärzten, Statistikern, IT-Spezialisten und Analysten zusammen, um evidenzbasierte Daten zu geeigneten Behandlungen zu entwickeln. Dies kann durch Big Data in der Gesundheitsbranche verwaltet und von Medizinern mithilfe von KI angemessen genutzt werden. Die Verarbeitung von Big Data in der Gesundheitsbranche hat das Wachstum des deutschen Marktes für maschinelles Lernen vorangetrieben.
Einschränkungen/Herausforderungen:
Der Mangel an qualifizierten Arbeitskräften für den Markt für maschinelles Lernen als Dienstleistung könnte ein Hauptproblem sein, das das Wachstum des weltweiten Marktes für maschinelles Lernen als Dienstleistung in erheblichem Maße behindern wird. Darüber hinaus benötigen Unternehmen qualifizierte Dienste, um bestimmte Funktionen anzupassen und auf ihren MLaaS-Plattformen zu implementieren. Strenge Compliance-Probleme sind ein weiteres Problem, das den Zielmarkt voraussichtlich einschränken wird.
Dieser Marktbericht zum Thema „Maschinelles Lernen als Dienstleistung“ enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-/Exportanalysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für maschinelles Lernen als Dienstleistung zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Auswirkungen von COVID-19 auf den Markt für maschinelles Lernen als Dienstleistung
Die COVID-19-Pandemie hat das Interesse an maschinellem Lernen beschleunigt, da die Welt Technologien zur sozialen Distanzierung praktiziert. Die Integration von maschinellem Lernen als Dienstleistung in den Markt sollte je nach Ausmaß und Art der Integration über jedes Softwaresystem und jeden Dienst möglich sein. Der Einsatz von Wärmekameras und Gruppenidentifizierungssystemen ist an Flughäfen, Bahnhöfen und anderen Orten des öffentlichen Verkehrs üblich geworden. Dies hat den Markt für maschinelles Lernen als Dienstleistung in den Mittelpunkt der Überlegungen gerückt, was voraussichtlich den Zielmarkt nach und nach vergrößern wird. Darüber hinaus hat der Einsatz von KI zur Erkennung der Anwesenheit von Personen in geschlossenen Bereichen in Krankenhäusern im Zusammenhang mit COVID-Pflegezentren einen positiven Einfluss auf den globalen Markt für maschinelles Lernen als Dienstleistung. Die für KI und Analyse verwendeten Algorithmen haben sich in letzter Zeit deutlich verbessert, was eine dynamische Chance für die Akteure/Anbieter schafft, die auf dem Markt für maschinelles Lernen als Dienstleistung tätig sind.
Marktumfang für maschinelles Lernen als Dienstleistung in Spanien
Der Markt für maschinelles Lernen als Dienstleistung ist nach Dienstleistung, Bereitstellungsmodell für Geschäftsfunktionen, Unternehmensgröße, Anwendung und Endbenutzer segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse dürftiger Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Service
- Verwalteter Dienst
- Professional
- Professioneller Service
Geschäftsfunktion
- Personalwesen
- Vertrieb und Marketing
- Finanzen und Betrieb
Bereitstellungsmodell
- Wolke
- Vor Ort
Größe der Organisation
- Große Organisation
- Kleine und mittlere Organisationen
Anwendung
- Arzneimittelforschung
- Betrugserkennung und Risikomanagement
- Verarbeitung natürlicher Sprache
- Marketing und Werbung
- Sicherheit und Überwachung
- Bilderkennung
- Prädiktive Analysen
- Datengewinnung
- Augmented und Virtual Reality
Endbenutzer
- Bank- und Finanzdienstleistungen
- Versicherung
- IT und Telekommunikation
- Forschung und Lehre
- Regierung und öffentlicher Sektor
- Einzelhandel und E-Commerce
- Herstellung
- Gesundheitswesen und Pharma
- Reise und Logistik
- Energie und Versorgung
- Medien und Unterhaltung
Wettbewerbsumfeld und Analyse der Marktanteile von Machine Learning als Service
Die Wettbewerbslandschaft des Marktes für maschinelles Lernen als Dienstleistung liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -einrichtungen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt für maschinelles Lernen als Dienstleistung.
Zu den wichtigsten Akteuren auf dem Markt für maschinelles Lernen als Dienstleistung zählen:
- Google (USA),
- Microsoft (US),
- IBM (USA),
- SAP (Deutschland),
- Amazon Web Services, Inc. (USA)
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Inhaltsverzeichnis
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.